
Visual Editor for Streamlining P4-based
Programmable Parser Development

1stMuhammad Fajar Sidiq
Department of Informatics

Institut Teknologi Telkom Purwokerto
Purwokerto, Indonesia

fajar@ittelkom-pwt.ac.id

2ndMega Pranata
Department of Informatics

Institut Teknologi Telkom Purwokerto
Purwokerto, Indonesia

mega@ittelkom-pwt.ac.id

3rdAkbari Indra Basuki
Research Center for Informatics
Indonesian Institute of Sciences

Bandung, Indonesia
akbari.indra.basuki@lipi.go.id

Abstract—P4 language enables new protocol development for
advanced networking tasks such as dynamic monitoring, custom
tunneling & routing, in-switch attack detection, and soon. Nev-
ertheless, developing a P4 program is challenging for those who
either lacking programming skills or advanced networking. This
paper proposed a visual editor to ease the development of P4-based
programmable parser which is the first and fundamental step in P4
development. The editor offers two functionalities, the creation of
custom protocols & protocols parser, and code generation for testing
purposes. For evaluations, we run a compatibility test to ensure that
P4-switch can parse any packet using bit-by-bit extraction defined by
the programmable parser. We develop custom protocols having the
same bit structure as the standard protocols, such as Ethernet, IP,
TCP, UDP, and MPLS, but use different naming. The result showed
that the receiver recognized the custom protocols as the standard
ones since the P4-switch treat them based on their bit structure. At
last, the proposed program can ease and speed up the development
of P4-based parser by providing visual editor, and network tester
generator.

Index Terms—visual, editor, P4 SDN, parser, new protocol

I. INTRODUCTION

Software-Defined Networking (SDN) revolutionized network
management and developments by proposing two main con-
cepts: central network management and network programma-
bility. OpenFlow is the pilot protocol that behaves as a south-
bound protocol for the central controller and the SDN switches.
It lets the developer determine what actions to be applied for the
matching packets [1]. With a centralized controller such as Onos
[2], Ryu [3], and Opendaylight [4], OpenFlow enables central
network management by installing the respective flow rules for
each switch.

The second phase of SDN is marked by P4 language that
enables the programmability of switches behavior covering how
to parse and process the network packets [5]. The rise of P4
SDN is driven by the limited functionality of OpenFlow SDN
and unsolvable consensus regarding what protocols that must be
supported by the SDN switch. Instead of defining a fixed set
of protocols, P4 language lets the user choose or develop their
preferred protocol and how to process those protocol. Conse-
quently, it satisfies both, the backward compatibility with the

legacy and OpenFlow protocols and the flexibility of developing
a new protocol to meet different use-cases. P4-based switch have
been widely proposed to solve hard problems in networking, such
as In-band network telemetry [6], heavy hitter detection [7], In-
switch DDoS detections [8], and soon.

Despite its flexibility, developing a P4 program is hard due
to its complexity and the need for extensive testing to ensure
that the new protocol is behaving correctly. The complexity of
a P4 program is derived from two parts, packet parser, and
packet processor. Packet parser requires the user to specifies bit-
by-bit protocol structure and how to parse those protocols in
the right sequence. The sequence of packet parsers must follow
the directed acyclic graphs (DAG) structure to avoid recursive
parsing. In packet processing part, the user must determine the
match-action table and the states that trigger those tables. Packet
processing performs the computation based on the parseable
header done by the packet parser. Therefore, it is crucial to ensure
that the new packet parser is parsing the packet header correctly.

Refers to the aforementioned problems, it is necessary to
ease the development of P4 Programs. Considering that the
packet parser is the most critical part of a P4 program, this
paper proposes a visual editor that specifically addresses the
development of the programmable parser. Particularly in how to
test the new parser to work as its purpose. Our proposed visual
editor, called Visual Editor for P4-based Programmable Parser
(VEP31), breakdown the problem into two parts: visual-based
protocol & parser editor, and code generator for testing purpose.
The visual editor aims to bridge the gap in the programming
skill by providing a visual editor for creating a new parser in
the form of a DAG-based state machine. It serves as a visual
abstraction layer of how a packet parser works. Meanwhile, the
code generator provides testing codes to ease the evaluation of
the newly developed parser.

Our proposed program focuses on lessening the learning curve
of the P4 language by proposing a visual editor approach. Some
existing works of P4-based programs have different functional-

1https://github.com/acbari/MiTE-SDN/tree/master/VEP3

2021 IEEE International Conference on Communication, Networks and Satellite (Comnetsat)

978-1-6654-3434-8/21/$31.00 ©2021 IEEE 225

Fig. 1. Internal Structure of P4 Programmable Switch

ities compared to our proposed editor. The work in [9] which
is called MiTE is our predecessor works that focus on visual
topology editor for P4 and OpenFlow networks. Our proposed
editor (VEP3) will be packed under the same bundle as MiTE.
Other works [10]–[13] focus on the P4 program verification,
validation, or cross-checking to find potential bugs and errors.
The closest work is presented in [14] where it can craft packets
tester given an input of a P4 file. However, the work did not
propose visual editing likes ours. Other work as in [15] aims to
assist the development of ASIC-based P4 Switch. Our proposed
program targets specifically for emulation testbed, not the real
hardware one, aiming for better accessibility of learning P4
language

We organize the paper into 4 sections. First we describe the
P4 SDN and its complexity. Second, we describes the technical
design of our program in chapter III. It pinpoints how the
visual editor and code generator works. Chapter IV discusses
the implementation results and evaluations. At last, chapter V
presents the conclusion.

II. P4 SDN COMPLEXITY

P4 language proposed a programmable switch that can be
tailored according to user preferences. The structure consists of
three parts, a programmable parser, a programmable processor in
the form of match-action pipelines, and a programmable deparser
(Fig. 1). Nevertheless, the flexibility and programmability of P4
SDN come at cost of complexity, particularly for those who start
to learn SDN or lacking in programming skills.

The authors define three aspects of P4 SDN complexity namely,
P4 switch mechanism, the programming of P4 language, and
the network testing. Even though the structure of a P4 switch
consists of only three parts, the programmable parser becomes
the real obstacle for those who do not have a firm knowledge of
computer networks. It requires the user to defines which protocols
are recognizable by the switch. Thus, the user must define the
bit-by-bit sequences of every protocol and how those protocols
interact with other protocols under a state machine structure.

The second challenge comes from the programmable packet
processor. Besides using a similar match-action structure as the
OpenFlow SDN, it has Arithmetic and Logic Units (ALU) that
enable more complex arithmetic and logic operations compared

to OpenFlow. If the user never learn OpenFlow SDN, it will be
quite challenging to understand the programmable processor.

Programmable deparser is the easiest part yet trickiest one
since it must be triggered from the P4 codes. Consequently, it
can be considered as the second problem (the programming P4
language).

The first hindrance of programming a P4 switch is how to
translate the protocol definition and their state machine structure
into P4 language. It might be an easy task that can lead to
catastrophic failure if not being carefully validated. Some works
have proposed a validation tool to prevent error, bug, and invalid
configuration [10]–[13]. In our paper, we minimize the error by
guiding and limiting the user preferences through visual-based
editing. The program ensures that the created parser always com-
plies to the rules of P4 language. We elaborate this mechanism
in Section III.

The second problem of programming a P4 program comes from
the diverse types of P4 switches. To support vendor-independent
approach, different P4 switch has difference feature that can be
utilized by importing the module into the P4 code. Thus, the user
should not expect that all P4 switches support similar capabilities
and functionalities, such as cryptographic hash or encryption
modules. The P4 environment lets the vendor advertises those
features as their selling points compared to the others.

The latest problem lies in how to test the program in a running
network machine. According to our knowledge, only the work
in [14] that supports automatic code generation. Given a P4
program, it generated a packet tester to validate the program.
Our work proposed a similar but distinct functionality. Instead of
testing the new parser in bidirectional communication, our works
proposed a compatibility test to validate that the P4 program can
parser any packet based on their bit-by-bit sequence and state
machine structure. We test the new parser to prove that a new
and custom protocol having the same structure as the standard
protocol can communicate to each other. Later on, the users can
develop custom protocol precisely tailor for their needs.

III. SYSTEM DESIGN

The flow design of our proposed Parser Editor is shown in Fig.
2. It follows the step of packet parser development that consists
of two main stages: parser drafting and testing.

Parser drafting deals with the creation of the underlying
building blocks of a parser and how they are being organized
as a single parser. Packet parser building blocks consist of two
parts: the recognizable protocols, and the extra metadata.

Packet parser editor lets the user organize how the parser will
extract the network protocols in bit-by-bit series. The parser editor
guarantees the validity of the created parser by ensuring that it
works under the rules of a directed acyclic graph (DAG) without
a looping pattern. A cyclic parser might result in a never-ending
packet parsing or any unintended security threats. To support a

2021 IEEE International Conference on Communication, Networks and Satellite (Comnetsat)

226

Fig. 2. The flow of programmable parser development and testing

stacked protocol such as MPLS and VLAN, adding a self-loop is
permissible. We called the structure of parser editor as DAGSeL,
a combination of a directed acyclic graph with self-loop nodes.

Parser testing involves complete testing of packet parser within
a real system, either in a hardware P4 switch or in an emulated
one. The proposed editor generates two codes for parser testing: a
Scapy-based protocol binding class, and a P4 parser code that can
be inserted into an existing P4 program. For the testing, we run
it using Mininet. The topology is generated using MiTE program
[9] while the P4-parser code and Scapy-based packet sender are
generated by the editor.

The following sub-sections explain the detail of the parser
editor.

A. Building Blocks

The editor consists of two building blocks, the recognizable
protocol, and packet metadata. Recognizable protocols refer to
which network protocols are recognized and extractable by the
P4 switch. For the sake of educational purposes, we simplify
the editor by supporting only two types of protocol: fixed-size
protocols, and the stacked ones such as MPLS. Meanwhile, the
extra metadata functions as a temporary memory to assist packet
processing. The user might create new metadata tailored for their
purpose in how to process the packet.

We organize the building blocks into two libraries: protocols
library, and metadata library (Fig. 3). Users can create new
protocols or metadata through the library window.

In P4 language, each protocol is a set of bit-fields with the
total size in bytes. For example, an Ethernet protocol is a set
of three bit-fields, a 48-bits of source MAC address, a 48-bits
of destination MAC address, and a 16-bits of ethernet type. The
protocol’s size must be divisible by eight. In this case, the total

Fig. 3. The building block of a parser: protocols and metadata

Fig. 4. Protocol drafting window and its visual structure

size of the Ethernet protocol is 112 bits or 14 bytes. Additional
padding bits are automatically appended to the new protocol if
the total size is not an 8-bit multiplier. To ease new protocol
creation, we add the bit-structure visualization into the drafting
windows (Fig. 4).

B. Parser Creation (DAGSeL)

The structure of a P4-based packet parser must satisfy a
directed acyclic graph structure with an optional self-loop edge
for every node (DAGSeL). Our proposed editor enforced the DAG
rule during parser creation by forbidding a cyclic interconnection
between parser nodes.

Given a directed graph (G) that represents a packet parser, the
nodes (V) and edges (E) of G respectively represent the node
parsers and the possible transitions between the nodes. Edge eij
is transition between node parser vi to node parser vj , where
vi, vj ∈ V . A node parser vi specifically parses one network
protocol (Pi) with one-to-one projection. A starting node (v0) is
a special node that has zero in-degree and does not represent any
network protocol.

2021 IEEE International Conference on Communication, Networks and Satellite (Comnetsat)

227

Fig. 5. Programmable parser graph: DAG + self-loop link

A packet parser is able to parse a specific protocol (Pi) if there
is a directed path (D) between the starting node (v0) to the node
parser vi that parse protocol Pi. The path D is a set of edges
ek, k = {0, 1, 2, ..., n}, where n = |D| − 1. The directed path D
is considered valid if the edge in D satisfy two requirement as
follow. First, the edge ek = (vi, vj) is continues, where ek[vj]
is equal to ek+1[vi]. Secondly, the edge ek is a valid parsing
transition where ek ∈ E.

A packet parser is valid if every node parser (vi) cannot reach
itself, except via the self-loop edge (eii). In another word, there is
no such directed path da, |da| > 1 where its starting node e0[vi]
is the same as its last node en[vj].

Figure 5 depicts the example of a packet parser that can
parse five different protocols: Ethernet, MPLS, IP, TCP, and UDP
protocol. The parser is a valid one since it does not contain any
cyclic path except for MPLS self-loop edge.

The transition between node parser is controlled by the edge
attribute (ak), where each edge or node transition ek has one
attribute ak. The attribute value is determined by the selector
field of the predecessor node. We break down the P4 parsers
into two different types: a simple parser, and a selector parser.
As its name implies the simple parser does not has a selector
field, thus the outgoing edge has a null attribute. Whereas for the
selector parser, the user must specify the selector field and all of
its transition attributes.

The TCP and UDP nodes in Fig. 5 are the simple node parsers
while the rest of the nodes are the selector ones. Ethernet node
parser has two outgoing edges to MPLS parser and IP parser with
the ethernet type as the selector field. The respective attribute
value for both transitions is 0x8847 and 0x800.

C. Parser Testing

The next phase of parser creation is to test the parser in a
running setup. We opt for emulation setup by using Mininet.
Three configurations are needed to run the emulation: the network
topology, sender and receiver program for the hosts, and the
forwarding codes for the P4 switches. For the topology, we use a
simple topology of one switch and two hosts generated by using
MiTE program (Fig. 6).

The remaining two configurations are generated by the pro-
posed editor according to the program stack (Fig. 7). The code

Fig. 6. Simple topology for testing new parser

generator translates the parser structure (DAGSeL) into a protocol
binding class by using the Scapy library. The sender and receiver
codes for the hosts are crafted by referring to this binding class.

Considering the editor only focuses on the programmable
parser, it did not generate the entire P4 program but the parser
codes. We modify the existing packet processing codes in [16]
to form a fully functional P4 program. The editor replaces the
parser code from the tutorial with the generated ones.

Parser testing acts as the ground truth for the new parser
whether it had worked correctly or not. To ensure correctness, we
use two kinds of testing, positive and negative testing. Positive
testing proves that the parser can parse the intended protocols
while negative testing proves that the parser is unable to parse
unrecognized protocols.

We use five protocols for positive testing namely: Ether, MPLS,
IP, TCP, and UDP protocols. For negative testing, we use ARP
and ICMP protocols. The editor only generates the positive
protocols. As a consequence, the P4 switch only recognized these
protocols and cannot parse the ARP and ICMP protocol.

For the host’s Scapy codes, we implement custom packet
protocol by using protocol binding. We use the same structure
as the positive protocol but with different naming. The new
names for the custom protocols are in lower case letter as follow:
ethernet, mpls, ipv4, tcp, and udp. This step is to test whether the
P4-switch will consider the new custom protocol based on their
structure or not. If it does, it will treat those protocols as the
standard protocols. Thus, it will forward the packet and will be
recognized by the receiving host. For compatibility testing, the
receiving node (host-2) imports the positive protocols directly
from the standard protocol.

IV. RESULT AND EVALUATIONS

A. Visual Editor

The final user interface of the proposed editor is shown in Fig.
8. The left-side pane contains the list of all the created parsers.
Underneath, it shows the recognized protocols and custom meta-
data used by the selected parser.

The right-side pane displays the parser structure (DAGSeL)
that shows how the node parsers are interconnected to each other.
The right pane also acts as the container for the drafting windows
to create new protocols and metadata.

2021 IEEE International Conference on Communication, Networks and Satellite (Comnetsat)

228

Fig. 7. Program stack for generating the testing codes

Fig. 8. The UI of the visual editor

B. Packet Forwarding Test

We tested the generated codes by using two routing mecha-
nisms, IP routing, and MPLS forwarding. We modify the routing
table of several project in [16] to form as in Table I. For
each routing, we sent eight packets from host-1 to host-2. The
summary of the forwarding test is listed in Table II. Fig. 9 and
Fig. 10 shows the respective result for IP routing and MPLS
forwarding. We also debug the setup to ensure that the packet is
sent through P4-switch by dumping the ingress interface of the
P4 switch (Fig. 11).

For the IP routing test, the P4 switch can parse all protocols
except for ARP and ICMP. Consequently, the ARP packets are
dropped since the switch cannot parse them. The switch also
dropped MPLS packets since IP routing does not implement
MPLS forwarding. However, different case is applied to ICMP
protocol. In this case, the switch inabilities to parse ICMP
protocol does not affect the routing. The switch can forward the
packet by using IP forwarding rules since the ICMP protocol is
an overlay protocol for the IP protocol.

In a P4-based programmable parser, there is no such layer
numbering. Instead, the overlay structure is determined by the
transition edges between the nodes. If protocol A is the ingress
of protocol B, any routing applied to protocol A will overshadow
protocol B. In this case, the switch will forward the packet even
though the switch cannot parse protocol B.

In the MPLS forwarding test, the P4 switch has the same
capabilities in parsing the protocol as in the IP routing test.
Nevertheless, the switch cannot forward not only ARP packets but
also IP packets. It happened due to MPLS forwarding does not
implement IP routing. The switch can forward the MPLS packets
to host-2 disregarding the overlay protocol that the packet carries
on. This results due to the same consequence of ingress edge and
overshadowing mechanism as in the IP routing test.

V. CONCLUSION

This paper proposed a visual editor for creating a P4-based
packet parser that able to parse new protocols based on their
bit-by-bit structure. The editor offers visual editing with zero-
coding by offering an integrated code generator. It generates a
P4-based parser and a set of codes to test the newly generated
parser. The editor passed the compatibility test since the generated
parser successfully recognizes and routes the packets with custom
protocols as long as they have the same structure as the standard
protocols.

REFERENCES

[1] The Open Networking Foundation,“openflow-spec-v1.3.0,”Available at
https://opennetworking.org/wp-content/uploads/2014/ 10/openflow-spec-
v1.3.0.pdf (2021/05/01).

[2] Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., et al., ”ONOS:
towards an open, distributed SDN OS”, In Proceedings of the third workshop
on Hot topics in software defined networking (pp. 1-6), 2014.

2021 IEEE International Conference on Communication, Networks and Satellite (Comnetsat)

229

[3] Tomonori, F. ”Introduction to ryu sdn framework.” Open Networking
Summit (2013): 1-14.

[4] Medved, J., Varga, R., Tkacik, A., Gray, K., ”Opendaylight: Towards a
model-driven sdn controller architecture,” Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks 2014,
IEEE, 2014.

[5] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., et al., ”P4:
Programming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review 44.3 (2014): 87-95.

[6] Van Tu, N., Hyun, J., Hong, J. W. K., ”Towards onos-based sdn moni-
toring using in-band network telemetry,” 2017 19th Asia-Pacific Network
Operations and Management Symposium (APNOMS), IEEE, 2017.

[7] Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., Rexford,
J., ”Heavy-hitter detection entirely in the data plane,” Proceedings of the
Symposium on SDN Research, 2017.

[8] Friday, K., Kfoury, E., Bou-Harb, E., Crichigno, J., ”Towards a unified in-
network DDoS detection and mitigation strateg,” 2020 6th IEEE Conference
on Network Softwarization (NetSoft), IEEE, 2020.

[9] Sidiq, M. F., Basuki, A., Rosiyadi, D., ”MiTE: Program Penyunting
Topologi Jaringan untuk Pembelajaran SDN,” Jurnal RESTI (Rekayasa
Sistem Dan Teknologi Informasi) 4.5 (2020): 970-977.

[10] Rakamarić, Z., Emmi, M., ”SMACK: Decoupling source language details
from verifier implementations,” International Conference on Computer
Aided Verification, Springer, Cham, 2014.

[11] Liu, J., Hallahan, W., Schlesinger, C., Sharif, M., Lee, J., et al. ”P4v: Prac-
tical verification for programmable data planes,” Proceedings of the 2018
Conference of the ACM Special Interest Group on data communication,
2018.

[12] Neves, M., Freire, L., Schaeffer-Filho, A., Barcellos, M., ”Verification
of p4 programs in feasible time using assertions,” Proceedings of the
14th International Conference on Emerging Networking EXperiments and
Technologies, 2018.

[13] Stoenescu, R., Dumitrescu, D., Popovici, M., Negreanu, L., Raiciu, C.,
”Debugging P4 programs with Vera.” Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication. 2018.

[14] Rodriguez, F., Patra, P. G. K., Csikor, L., Rothenberg, C., Laki, P. V. S., et
al. ”BB-gen: A packet crafter for P4 target evaluation.” Proceedings of the
ACM SIGCOMM 2018 Conference on Posters and Demos. 2018.

[15] Intel,“Intel®p4studio,”Available at https://www.intel.com/
content/www/us/en/products/network-io/programmable-ethernet-switch/p4-
suite/p4-studio.html (2021/05/01).

[16] Osiński, T.,“P4-Research/p4-demos: Prototyping networks with
P4,”Available at https://github.com/P4-Research/p4-demos (2021/05/01).

TABLE I
ROUTING TABLE CONFIGURATIONS

Tables Action Match value Out
mplslookup table forward label = 100 Port2
ingress.routing table ipv4 forward 10.0.20.0/24 Port2

TABLE II
PACKET ROUTING RESULTS

Protocols sequence Routing
IP MPLS

ethernet ARP X X
ethernet ipv4 ICMP V X
ethernet ipv4 tcp V X
ethernet ipv4 udp V X
ethernet mpls mpls ARP X V
ethernet mpls mpls ipv4 ICMP X V
ethernet mpls mpls ipv4 tcp X V
ethernet mpls mpls ipv4 udp X V

Fig. 9. IP routing from host-1 to host-2

Fig. 10. MPLS forwarding from host-1 to host-2

Fig. 11. In-switch debugging using Tcpdump

2021 IEEE International Conference on Communication, Networks and Satellite (Comnetsat)

230

