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Abstract—According to the research trend, training the dis-
tributed denial of services (DDoS) attacks classifier using network
flow features will yield higher classification performances and
efficiency than the per-packet-based approach. Nonetheless, the
existing flow-based classifier uses bloated features and offline flow
extraction that is not suitable for real-time DDoS protection. This
study investigates the feasibility of compact flow features that can
be directly extracted using a programmable switch for real-time
DDoS attack classification. The proposed method considers only
four flow features: IP protocols, packet counter, total byte counter,
and the delta time of a network flow. The evaluation results
on the CICDDo0S2019 dataset showed a comparable classification
performance to the works that use bloated features (24 — 82
features). The best result was achieved by the decision tree and
the random forest classifier showing > 89.5% scores in accuracy,
precision, recall, and F1 score. The proposed models can classify
10 out of 12 DDoS attacks correctly, failing only to discriminate
between SSDP and UDP-based DDoS attacks. In addition, the
trained classifier shows a better generalization ability by retaining
similar performances on unseen 42.8 millions flow data while
trained on < 200 thousand flow data. At last, the proposed
method is suitable for real-time application since it supports quick
classification performance of up to 9.6 millions of flow inferring
per second on the Decision Tree classifier.

Index Terms—DDoS Attacks classification, Compact flow fea-
tures, Software-defined networking, Real-time protection

I. INTRODUCTION

Distributed denial of services (DDoS) attacks have a severe
impact on internet infrastructure and cause multi-million dollars
of losses to information technology businesses. The proper
countermeasure for DDoS attacks is to scrub the attacks as
soon as possible before they depleted the server and network
resources. Massive works has been proposed to effectively
counter DDoS attacks, from packet-based screening [1]-[11]
to network flow level analysis [12]-[25]. The technique has
evolved from simple threshold-based detection [6]—-[8], [11] to
entropy analysis [9], [10], and the use of machine learning [1],
[5], [32], [33] and deep learning method [2]-[4], [34].

Despite its ability to mitigate DDoS attacks, most of the non-
machine learning approach [6]-[11] are limited to detecting one
kind of DDoS attack and unable to differentiate several types
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of attacks at once. This limits the defender’s ability to provide
a proper countermeasure to the attacks. The use of machine
learning successfully addresses the classification problem as
presented in [1]-[5]. Most works are trained and tested using
the CICDDo0S2019 dataset due to its vast coverage of modern
DDoS attacks.

Nevertheless, the machine learning approach has a drawback
in its workflow that makes it not suitable for real-time pro-
tection. The works use flow features extracted in an offline
fashion using the CICFlowMeter tool [26]. Consequently, the
classification cannot run in a real-time manner, since we must
first log the packet and extract the flow features before the
machine learning model can infer them accordingly.

This study aims to solve the aforementioned problem by
proposing compact flow features that are extractable by net-
working devices, thus it can be inferred directly by the trained
classifier in a real-time fashion. The compact feature preference
is to compensate for the limited processing ability of network
devices without incurring significant latency in packet forward-
ing. We propose four flow features that are commonly extracted
by network switches: IP protocol, packet counter, total byte
counter, and flow delta time. We use the CICDD0S2019 dataset
for the evaluation and the Scapy tool to parse the compact flow
features. The study compared the classification performance of
the classifier trained using compact flow features with existing
works that use numerous features. At last, we present the
feasibility analysis for real-time classification of DDoS attacks
by observing the classifiers inferring time.

We structure the paper by first presenting the system design,
covering the technical requirement of the compact flow fea-
tures and the design of the evaluation testbed. In section III,
we present the evaluation that covers three main objectives:
classification performance, generalization ability, and real-time
feasibility. Finally, section IV concludes the paper.
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A. Compact flow features

The minimalist selection of flow features aims to mini-
mize extraction time by the switches without significantly
affecting forwarding latency. We select four flow features that
are commonly extracted by the software-defined networking
(SDN) switches: IP protocols, packet counter, byte counter, and
delta time. In OpenFlow SDN [27], the controller can gather
the features by sending OFPFlowStatsReply command to the
OpenFlow switches. In P4 SDN [28], the switch can extract
the features using a programmable parser and save them in
the switch’s internal registers. The classifier can collect the
features using in-band telemetry [29], [30] or using a pooling
mechanism to carry the stored flow features using a carrier
packet.
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Fig. 1: Comparison of the proposed method (left branch) to the
existing works (right branch)
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The comparison between our proposed scheme to the existing
work is shown in Figure 1. The right branch shows the
existing works that use packet logging and offline flow parsing,
thus prohibiting real-time flow classification. In real-time, the
network device does not know whether a certain network packet
belongs to a certain network flow. Consequently, the switch
cannot directly drop the packet as the classifier only issues
dropping commands at the flow level. The decision to drop
the packet is only applicable after the packet has been logged
and parsed to the flow data. This schema has two setbacks,
first, it adds extra processing time for logging and flow parsing,
and second, it needs extra storage to store the logged packet.
Considering one flow data comprises multiple network packets,
the space to store the logged packets is in different magnitudes
than the flow data.

The SDN switches, both OpenFlow and P4 switches, can
extract the flow information within the switch hardware. As a
consequence, they know whether a certain packet belongs to a
certain network flow or not. The switch can drop the packet
directly if it belongs to the flow labeled as DDoS attacks. The
remaining requirement to achieve real-time DDoS protection
is to ensure that the classifier can infer the network flow as
quickly as possible to handle massive concurrent flows during
peak traffic.

DDoS Attack  Number of flow data

DNS 14629
LDAP 2068826
MSSQL 3511790
NTP 1191398
NetBIOS 3935138
SNMP 4811793
SSDP 2583056
SYN 1715307
TFTP 19932309
UDP 3109787

UDP-lag 4128

WebDDoS 446

The final compact flow feature dataset is available on our
GitHub page [31]. As a recap, the number for each DDoS attack
is presented in table I.

B. Classifier model

Existing work uses a bloated number of flow features con-
sisting of statistical features in addition to the basic flow data.
This scheme requires an excellent classifier model and massive
computation resources the train them. Several works [2]-[4],
[34] intentionally use deep learning techniques to achieve better
classification results. Despite the outstanding performances, the
scheme is not practical for real-time DDoS filtering due to
extensive computation time.

Our proposed scheme, in contrast, uses a compact number of
4 flow features to ease model training and quick classification
to meet the real-time constraint. Considering the proposed
flow data is quite minimalist, our scheme can be applied to
lightweight machine learning models such as Random forests,
Support vector machines, Decision trees, and others alike.
These classifier models can be trained in a short time and can
infer the flow in the sub-seconds band to meet the real-time
properties. Based on the preliminary test, we limit the classifiers
in our evaluation to four: XGBoost, Random Forest, Decision
Tree, and K-nearest Neighbor (KKN).

C. Evaluation method

For evaluation, we use CICDDo0S2019 [19] as the dataset
considering two reasons. First, it has a wide coverage of modern
DDoS attacks providing 12 kinds of them, either reflective or
flooding ones. Second, it has been used in numerous works,
thus it eases the comparison effort of our proposed scheme
against similar works.

Due to limited testbed infrastructures, we opt for the emula-
tion approach by mimicking in-network flow extraction using
Scapy. The process commences by parsing the PCAP file into
a flow-based session of TCP or UDP protocols. Next, we label
the flow data based on the timing information [cicddospaper] to
determine the type of DDoS attacks. Finally, we store only the
four compact flow features and their label as the final compact
dataset. We can reduce the total size of the dataset from ~ 152
GB of per-packet data into ~ 0.99 GB of compact flow data.
Compared to CICFlowMeter generated flow data (= 20.7 GB),
our compact flow features is =~ 5% of the fraction.
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The evaluation phase aims to measure three main objectives

as follows.

« Classification performances for DDoS attacks
The first objective is to evaluate the classification perfor-
mance of the four chosen classifiers (XGBoost, Random
Forest, Decision Tree, and K-nearest neighbor) to deter-
mine the most minimalist training dataset. The minimalist
classifier will be able to infer the flow data faster while
preserving its classification performance. We use accuracy,
precision, recall, and F1-score as the evaluation parameter.

o Generalizability of the Classifier
This evaluation is to test the overfitting possibility of the
training dataset. We run the trained classifier on all of the
generated flow datasets. If the classifier is overfitted to
the training data, the classifier performance will degrade
significantly. A slight degradation of the performances
indicates that the trained classifier is indeed able to classify
DDoS attacks or generalizable for unseen flow data.

« Feasibility for real-time classification
The last objective is to assess the feasibility of real-
time protection by measuring resource utilization and the
inferring time of the classifiers. The number of flow classi-
fications per second determines the real-time applicability
of the classifier.

III. EVALUATION
A. Classification performances

We evaluate the impact of using compact flow features
by varying the size of training data. A small dataset usually
produces better accuracy and precision due to the overfitting
of the training data. Consequently, the trained model cannot be
generalized to unseen flow data. Meanwhile, a bigger dataset
will require more computation resources to train the model. It
will slow down the inferring process and is not suitable for
real-time classification.

Figure 2 shows the classification performances over four
different sizes of training data. The training data is generated
by randomly sampling the flow dataset based on the label
information. A 5K training dataset means that we pick up 5000
flow data from the main dataset. The results show that with the
exception of the KNN classifier, the classification performance
is convergent at approximately > 90% score using 20 thousand
samples per-DDoS attack.

We compared our proposed scheme that uses a small number
of flow features with existing work that uses tens of flow
features [18], [19], [32]-[34]. Table II shows the comparison
results. Even though our proposed method has a lower score
in accuracy, precision, recall, and F1 scores, it can classify
more DDoS attack types than the existing works. Our proposed
methods only fail to differentiate between SSDP DDoS and
UDP DDoS attacks.

B. Generalization performances

The next step after training the model is to test whether
the model can be generalized to classify the unseen flow data.
Figure 3 shows the confusion matrices for each classifier tested
on the generated dataset. The compact dataset comprises 12
DDoS attacks with a total of ~ 42.8 millions of flow data.
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Fig. 2: Classification performance on different sizes of training
data
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Fig. 3: Confusion matrices over unseen flow data ( = 42 million of network flow data)
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Paper #Flow features #Attack types Classifier Accuracy  Precision Recall F1-score
[19] 80 12 1D3 - 0.78 0.65 0.69
RF - 0.77 0.56 0.62
Naive Bayes - 0.41 0.11 0.05
Logistic regression - 0.25 0.02 0.04
[32] 24 12 MLP - 0.8519 0.7651 0.7544
82 12 MLP - 09116 0.7941 0.7939
[33] 24 3 Naive bayes - 0.790 0.004 0.008
SVM - 0.988 0.459 0.627
Decision Tree - 0.997 0.704 0.825
Logistic regression - 0.25 0.02 0.04
[34] 78 5 Auto encoder + MLP 0.9834 0.9791 0.9848 0.9818
[18] 25 7 Naive bayes 0.9625392 0.96 0.96 0.96
Proposed 4 10/12 XGBoost 0.90354 0.90390 90354 0.90227
RF 0.89859 0.89849  0.89859 0.8983
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Fig. 4: Estimated classification performance and the resources usage

The result shows that there is a slight improvement over the
training result. This phenomenon is due to the duplicated flow
data that occurs at different time spans. DDoS attacks are
usually launched by compromised hosts or farm servers that
run a similar or the same DDoS script. As consequence, the
generated flow data might yield similar patterns.

Overall, the performance is consistent with the training
dataset, having a disability to discriminate between SSDP and
UDP DDoS attacks. The best classification result was obtained
by Random forest and Decision tree classifier with accuracy
of > 95%. The XGBoost and KNN classifiers have worse
discrimination performance than the training dataset. The KNN
classifier cannot correctly infer web DDoS attacks while the
XGBoost cannot infer TFTP attacks.

C. Real-time feasibility

Acquiring quick flow classification is not the only require-
ment for real-time applicability. The computational resource
used to infer is crucial to guarantee the scalability of flow clas-

sification during high-load traffic. Figure 4 shows the summary
of processor utility, memory usage, and flow classification speed
for each selected classifier. The test is run on a laptop machine
with an Intel i7 10750H and 32 GB of RAM.

XGBoost has better processor utilization compared to other
classifiers implemented in Sklearn library. Consequently, it
placed second in the classification speed test. Meanwhile, the
KNN classifier has the worst classification speed among the
selected classifiers.

The decision tree classifier achieves the fastest classification
speed within the sub-microsecond band per-flow data. As a
result, for every second, decision trees can infer ~ 9.6millions
flow labeling. The resource consumption for the decision tree
classifier is also among the lowest ones, requiring only < 8GB
of memory.

IV. CONCLUSION

This study shows that the proposed compact flow features
are applicable for real-time DDoS attack classification. First, it
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has a classification performance compara
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€ to existing wor

that uses bloated flow features, reaching > 89% score in
accuracy, precision, recall, and F1-score. The trained classifier
is also generalizable for unseen flow data without significant
degradation. The decision tree classifier shows the best result.
It has an estimated classification capacity of ~ 9.6 million of
flow data per second.
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