
oid:8827:24900359Similarity Report ID:

PAPER NAME

01 conference-template-letter COMNETS
AT 2022 - testing micro.docx

AUTHOR

Alwi Maulana

WORD COUNT

3490 Words
CHARACTER COUNT

19702 Characters

PAGE COUNT

7 Pages
FILE SIZE

1.1MB

SUBMISSION DATE

Oct 13, 2022 10:47 AM GMT+7
REPORT DATE

Oct 13, 2022 10:48 AM GMT+7

3% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

1% Internet database 0% Publications database

Crossref database Crossref Posted Content database

2% Submitted Works database

Excluded from Similarity Report

Bibliographic material Manually excluded text blocks

Summary

Design and Testing on Migration of Remiss-

Supply in Banking System to Microservice

Architecture

Alwi Maulana

Faculty of Informatics

Institut Teknologi Telkom

Purwokerto

Purwokerto, Indonesia

18102185@ittelkom-pwt.ac.id

Pradana Ananda Raharja

Faculty of Informatics

Institut Teknologi Telkom

Purwokerto

Purwokerto, Indonesia

pradana@ittelkom-pwt.ac.id

Abstract— The architectural migration of the banking

service system from a monolithic architecture to a

microservices architecture is now comprehensive. However,

service applications that adapt to a monolithic architecture

have many shortcomings at the time of development. This

paper analyses, migration, and testing microservices

architecture to meet the needs of banking services at PT. Bank

Negara Indonesia with the scrum method. The Scrum method

focuses on migration analysis, data inquiry, details inquiry,

remis-supply, deployment, and testing. The test results on

migrating banking services to microservices can be applied and

have non-constant performance.

Keywords— Banking, Microservices, Migration, Remiss-

Supply, Testing

I. INTRODUCTION

The acceleration of digital technology in the era of the
industrial revolution 4.0 can positively impact the
acceleration and innovation of digital services for employees,
employees, and partners. The hope is that the efforts made on
this acceleration are to build flexible, cloud-based
applications. So that service providers can develop services
quickly and easily[1][2]. This acceleration coincides with the
emergence of development paradigms such as microservices,
DevOps, and cloud computing. This technology is a
technology adaptation of large companies such as Netflix,
Amazon, and Uber to create applications based on
microservices that are robust, more adaptive, and can run on
cloud and container-based platforms[3][4][5]. Based on a
report from JRebel in 2022, the trend of Enterprise Java
system architecture which has the most significant
percentage of digital service development is microservices
architecture at 32%. The second place is monolithic at 22%.
The third is modular monolithic. The fourth is SOA, and fifth
is the Desktop App, sixth order Serverless, as in Fig. 1[6].

The banking system has adapted the microservices
architecture and banking itself has a vital role in controlling
the progress of a country's economy. A nation's economic
progress depends on its banking system's success and
progress. So, the banking system is the blood of the country's
economy. Significant banking activity is services in cash

withdrawal and deposit transactions. PT. Bank Negara
Indonesia is digitally transforming its services by
implementing a microservices architecture to accommodate
all complex services and systems. Microservices is a solution
to the problems faced by PT Bank Negara Indonesia.
Microservices architecture is a distributed approach that
implements applications separately into smaller parts
according to existing services. Then they do not depend on
each other and can be connected through the Application
Programming Interface. The application of microservices to
services can be developed individually and tested on each
service without affecting other services or applications so that
services will always be available even though they are in
development, in other hand the application can use the
current technology as it needs. In practice, microservices will
parse applications in business processes as web services. So
microservices positively impact developers in developing
applications with various programming languages[7].

Fig. 1. Main Architectural Survey Results of Application Development

PT. Bank Negara Indonesia has many services, including
Service Inquiry Account, Cash Pick Up, Remis Supply
Foreign Currency, and Remis Supply Service. Development
of Remis Supply Service in the form of business processes
which will later become the logical flow of domestic foreign

2

2

currency storage services by each branch office. The Remis
Supply business process is the result of the identification of
the microservices architecture of the Remis Supply service,
which previously was still implementing a monolithic
architecture. The negative impact of using a monolithic
architecture is that if a failure occurs in one service, it will
affect other services. Each service must use the same
programming language and tools or platform and cause the
software to be unreliable when restarted for a development.
In this case, we will migrate the remis supply service into a
microservices architecture. Remis Supply Service has six
subservices in the cash withdrawal deposit flow. There are
three other subservices, including Inquiry Data which aims to
find complete transaction data. Then, Inquiry Details to view
more detailed transaction data and Remis Supply Request for
shellfish supply to make a cash withdrawal or deposit request.
The service migration process for remis supply using the
scrum approach. The choice of this method is easy to handle
because it is easy to handle, flexible, contains a
comprehensive development strategy, and can complete
complex projects with an innovative approach in a short time.
The scrum master will guide this method because it applies
sprints as a progress achievement target daily and weekly.
Implementing the migration process using the Java
programming language and PT. Bank Negara Indonesia used
it to develop into microservices.

Based on the problem description, it is necessary to
migrate the subservice inquiry data, inquiry details, and remis
supply request service belonging to PT. Bank Negara
Indonesia has become a microservices architecture using the
scrum method. It then tests the results of service migration on
its performance by measuring the system's reliability under
various load conditions [8]. The purpose of testing the web
service is with a web-service throughput of 200 threads and
1000 threads per minute and to ensure the data entered the
function.

II. METHODOLOGY

A. Existing system

Remis-Supply at PT. Bank Negara Indonesia is a routine
activity that aims to process inter-bank transactions. Remis-
Supply is technically the stage of someone who makes a
transaction to fill a balance in a savings account or take his
money back. The banking system at PT Bank Negara
Indonesia still uses a monolithic-based architecture that
stores nominal data from bank customer activities. This
service can also search data based on several parameters
stored in the customer's activity history. The customer history
in question includes the date of receipt, date of delivery,
branch activity including withdrawals or deposits, and
activity ID.

B. Scrum

1) Product backlog

This migration stage will use the scrum method. The first
step in this method is to determine functional and non-
functional requirements based on a priority scale by

compiling the product backlog in Table 1. Five features are a
high priority in migrating the Remis-Supply web service at
the product backlog stage. The first features are system
analysis, database design, and resource collection. Next, at
the product backlog stage, subservice migration inquiry data,
subservice migration inquiry details, and remis-supply
requests for subservice migration. The final product backlog
stage is implementation and deployment on virtual machines.

TABLE I. PRODUCT BACKLOG OF MICROSERVICES MIGRATION

No Backlog Name Priority

1
System analysis, database design, and collection of

resources needed in web-service migration.

100

2
Tracking deposit and withdrawal activity logs (Inquiry

Data).

100

3
Tracking deposit and withdrawal activity logs with

details and denominations (Inquiry Details).

100

4
Request new deposit and withdrawal transactions

(Remis-Supply Request).

100

5 Docker implementation and deployment. 70

2) Sprint Planning

Table 2 is the sprint planning stage which aims to carry
out the breakdown stage of the product backlog. Based on the
backlog, there are four sprints for remis-supply services.

TABLE II. SPRINT PLANNING OF MICROSERVICES MIGRATION

Sprint Backlog Name

System

Analysis

Analysis of architecture monolithic and microservice.

Database design

Resources collection

Inquiry Data

Creating XML Message request and response schemas

Coding for service config web-service

Creating repository entities and database connections

Code implementation on CC case

Code implementation in the BRANCH case

Testing service

Inquiry Details

Creating XML Message request and response schemas

Making code for service config web-service

Creating repository entities and database connections

Code implementation in the "Inquiry" case

Code implementation in the "Approval" case

Code implementation in the "Reversal" case

Testing service

Remis Supply

Request

Creating XML Message request and response schemas

Coding for service config web-service

Creating repository entities and database connections

Coding for Cut-Off Time

Sprint Backlog Name

Coding to process the request value

Coding for Core Service connections

Coding for Invoke Core Service (case “Deposit”)

Coding for Database Log

Coding to process response data

Coding for remis response (Deposit)

coding for the Supply case value set (Withdraw)

Testing service

Docker

Implementation

and

Deployment

Docker implementation on Inquiry Data subservice

Docker implementation on the Inquiry Details

subservice

Docker implementation on Remis Supply Request

subservice

Deployment of all subservices

3) Sprint Backlog

The implementation stage of microservices migration on

remis-supply services, which consists of four sprints, is as

follows.

a) In sprint stage 1, which analyzes the monolithic web

services and focuses on system analysis, collection

resources, and database design wich is done with an

estimated time of 104 hours starting from October 11, 2021

to October 29, 2021 as indicated on Fig 2 which is an

overview of the burndown chart of sprint 1. Fig. 3 shows the

results of the Remis Supply web service flow analysis,

which consists of 6 subservices: inquiry data to find

transaction data, inquiry details to see more complete

transaction data, and remis-supply request to make new

withdrawals and deposit transactions. Cash, remis-supply

approval to process approval of a new trade, remis-supply

reversal to process failed or rejected transactions, and remis-

supply response to process responses from eligible

transactions. In the microservice architecture of remis-

supply based on inquiry data, inquiry details, and remis-

supply requests subservices have separate businesses, as

well as processes from other subservices which shown in

Fig. 4. The procedure for running the remis-supply web

service begins with communication using the SOAP API by

sending a request in the form of an XML message by the

user to the main application. Then it will be processed based

on the subservice used. Then a response will appear after the

process is complete.

b) The implementation phase of sprint 2 focuses on

migrating the inquiry data subservice which is done with an

estimated time of 255 hours starting from November 1, 2021

to December 12, 2021 as indicated on Fig. 5 which is an

overview of the burndown chart of sprint 2. Inquiry details

subservice aims to find transaction data with two types of

cases, namely the "INQUIRY" transaction, which has an

interpretation with the name case branch. Then

"APPROVAL," which represents the case name cc. Fig. 6

shows the flow of the inquiry data subservice starting from

the client sending a request then the service processes and

performs a database search, then sends the data search result

back to the client in the form of an xml response.

c) Sprint 3 is a sprint that focuses on migrating subservice

inquiry details used to find detailed transaction data wich is

done with an estimated time of 245 hours starting from

December 13, 2021 to January 24, 2022 as indicated on Fig.

7 which is an overview of thr burndown chart of sprint 3.

There are three types of cases in inquiry details subservice,

namely “INQUIRY” transactions are represented by the

name of case inquiry, “APPROVAL,” which is represented

by the name of case approval, and “REVERSAL,” denoted

by the name case reversal. Fig. 8 shows the flow of the

inquiry details subservice starting from the client sending a

request then the service processes and performs a database

search, then sends the data search result back to the client in

the form of an xml response.

Fig. 2. Breakdown Chart Sprint 1

Fig. 3. Monolithic architecture-based remis-supply

Fig. 4. Microservice architecture-based remis-supply

Fig. 5. Breakdown Chart Sprint 2

Fig. 6. Service inquiry data workflow

Fig. 7. Burndown Chart Sprint 3

Fig. 8. Service inquiry details workflow

d) Sprint 4 focuses on migrating the remis-supply request

subservice which is done with an estimated time of 306

hours starting from January 24, 2022 to March 5, 2022 as

indicated on Fig. 9 which is an overview of the burndown

chart of sprint 4. Remis supply request subservice has a

functions to make a new withdrawal or deposit transactions

with two types of cases, namely "REMIS" transactions with

functions to make cash deposit transactions and "SUPPLY,"

which functions to make cash withdrawal transactions. Fig.

10 shows the flow of the remis supply request subservice

starting from the client sending a request then the service

validate and performs a database search, if the data that are

looking is exist in the database, then the next step is the

service will send a request data to revalidated by the core

service to get a journal number and save the request into

database, then send the response xml to the client.

Fig. 9. Burndown Chart Sprint 4

Fig. 10. Service remis-supply request workflow

3

3

e) Then after migrating all remis-supply subservices, the

next step is sprint 5 which is to deploy web services on

containers and virtual machine. And it is testing the

performance of remis-supply web services with an estimated

time of 107 hours starting from July 12, 2022 to July 29,

2022 as indicated on Fig. 11 which is an overview of the

burndown chart of sprint 5.

Fig. 11. Burndown Chart Sprint 5

III. TESTING AND ANALYSIS

After running several test scenarios and collecting test
results, each architecture and test shows different results
based on response time, latency, throughput, and process
status.

A. Load Testing Scenario between Monolithic and

Microservices Architecture

This test compared monolithic and microservices
architecture performance in terms of response time, latency,
and throughput. In this test, the ramp-up time was 0.1
seconds, and the loop count was 2. The number of threads
was set to 100 and increased to 200. There are three results
from the test to be analyzed, namely response time, latency,
and throughput. Response time is the time it takes from the
request is received until the response is processed. Latency is
the time it takes the server to complete the execution of a
request that is usually sent by a client. And throughput
defined as the number of requests processed per unit of time.

1) Monolithic

The results of load testing on the subservice inquiry data,
inquiry details and remis supply request with monolithic
architecture showed different results. For example, Fig. 12 is
the remis supply subservice which indicates a high response
time with an average response time of 1616.06/ms, inquiry
data subservice with an average response time of 389.65/ms,
and the inquiry details subservice with an average response
time of 241.175/ms. The test shows different result for each
subservice.

Then the latency test results on the monolithic
architecture show a significant difference between the
subservice inquiry data and inquiry details. The one that
offers the highest derivative is the remis supply request in

Fig. 13 this is due to the complexity in the flow of each
subservice. The same thing happened to the throughput test
results shown in Fig. 14. This indicates that the inquiry details
subservice has a higher throughput than the inquiry data
subservice, and remis supply request have the lowest
throughput. Based on the tests carried out on the monolithic
architecture, it shows that the subservice has good
performance, but there are similarities in the response time
results of the two, which produce graphs that are not constant.

Fig. 12. Monolithic sample response time test

Fig. 13. Monolithic Average Latency

Fig. 14. Monolithic throughput

1

1

4

6

2) Microservices

The load testing results on subservice inquiry data,
inquiry details and remis supply request with microservices
architecture showed significant differences. As shown in Fig.
15, the remis supply request subservice response time is
higher than the inquiry data and inquiry details with an
average response time of 42404/ms, inquiry data subservice
with an average response time of 586/ms, and inquiry details
subservice with an average response time of 552/ms. A
failure influences this in the process that occurs in the remis
supply request subservice. But both inquiry data and inquiry
details subservice show non-constant results and tend to
decrease in the 100th thread in the inquiry data and inquiry
details subservices.

Fig. 15. Microservices Load Test Performance Throughput

Then the latency results show that the remis supply
request subservice has a higher average latency, as shown in
Fig. 16 which can be seen that the inquiry data and inquiry
details subservice have almost the same value. The same
thing happened to the throughput results, which had
differences between the subservice inquiry data, inquiry
details, and remis supply request with the lowest throughput
listed in Fig. 17.

Fig. 16. Microservices load test average latency

Fig. 17. Microservices load test throughput

Based on tests conducted on the microservices
architecture, it shows that the remis supply request subservice
has lower performance than the inquiry data and inquiry
details subservice. The effect is on the remis supply request
subservice, which has a more complicated flow and must
check the database repeatedly and then save the data to the
database. However, there are similarities in the response time
results of the two, which produce unstable graphs.

B. Stress Testing Scenario

The stress test implementation aims to discover that the
microservices architecture service can handle large requests.
In this test, the ramp-up time was 0.1 seconds, and the loop
count was 1. Additionally, setting the number of threads to
1000. Stress testing results on subservice inquiry data,
inquiry details, and remis supply request. As shown in Fig.
18, the response time for stress testing is higher than for load
testing. It is also affected by some subservices that cannot
accept large-scale request loads, which can fail. Remis supply
request subservice has a higher result with an average
response time of 1616.06/ms, inquiry data with an average
response time of 389,65/ms, and inquiry details with an
average response time of 241,175/ms.

Fig. 18. Microservices stress test sample

Then the latency results show that the stress testing results
have a higher average latency on the remis supply request

subservice higher than inquiry data and inquiry details
subservices, as shown in Fig. 19.

Fig. 19. Microservices stress test average latency

The same thing happened to the throughput results, where
the stress testing results on the remis supply request
subservice had a higher throughput than the inquiry data and
inquiry details subservice shown in Fig. 20.

Fig. 20. Microservices stress test throughput

The tests conducted on the subservice inquiry data,
inquiry details, and remis supply request with microservices
architecture using stress testing scenarios show that services
perform differently in large-scale handling loads. The
occurrence of a failure in the inquiry data subservice and the
higher is the remis supply request which show that the remis
supply request is unable to handle large-scale request.

IV. CONCLUSION

After analysing the results of each test scenario. Load
testing monolithic and microservices architecture, and stress

testing on microservices architecture. The conclusion is that
both have identical test results that are not constant. In this
case study, the testing implementation uses different server
specifications, so there are significant differences in test
results. On a monolithic architecture with on-premises server
specifications, Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50GHz RAM dev docker 8GB server with IBM enterprise
has better performance than a microservices architecture that
uses a virtual machine google compute engine with
specifications n1-standard- 2 (Intel Haswell) 1 vCPU 7.5GB
memory and spring boot framework. But in terms of
development and maintenance, the microservices
architecture is preferred because the system is simpler and
unrelated to each other so that each subservice can use
different technologies as needed, compared to the monolithic
architecture which still unites all subservices into one service.

REFERENCES

[1] A. Megargel, V. Shankararaman, and D. K. Walker, “Migrating

from Monoliths to Cloud-Based Microservices: A Banking

Industry Example,” in Computer Communications and Networks

Software Engineering in the Era of Cloud Computing, 1st ed., M.

Ramachandran and Z. Mahmood, Eds. Leeds: Springer, 2020, pp.

85–108. doi: https://doi.org/10.1007/978-3-030-33624-0_4.
[2] Maniah, B. Soewito, F. L. Gaol, and E. Abdurachman, “A

systematic literature Review: Risk analysis in cloud migration,”

Journal of King Saud University - Computer and Information

Sciences, vol. 34, no. 6, pp. 3111–3120, Feb. 2021, doi:

10.1016/j.jksuci.2021.01.008.

[3] V. Velepucha and P. Flores, “Monoliths to microservices-

Migration Problems and Challenges: A SMS,” in 2021 Second

International Conference on Information Systems and Software

Technologies (ICI2ST), Mar. 2021, pp. 135–142. doi:

10.1109/ICI2ST51859.2021.00027.

[4] L. Baresi and M. Garriga, “Microservices: The evolution and

extinction of web services?,” in Microservices: Science and

Engineering, 1st ed., A. Bucchiarone, N. Dragoni, S. Dustar, P.

Lago, M. Mazzara, V. Rivera, and A. Sadovykh, Eds. Cham:

Springer, 2020, pp. 3–28. doi: 10.1007/978-3-030-31646-4_1.

[5] G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, and Z. Li,

“Microservices: Architecture, container, and challenges,” in

Proceedings - Companion of the 2020 IEEE 20th International

Conference on Software Quality, Reliability, and Security, QRS-

C 2020, Dec. 2020, pp. 629–635. doi: 10.1109/QRS-

C51114.2020.00107.

[6] JRebel, “2022 Java Developer Productivity Report,” 2022.

Accessed: Jul. 14, 2022. [Online]. Available:

https://www.jrebel.com/resources/java-developer-productivity-

report-2022

[7] F. Rademacher, S. Sachweh, and A. Zündorf, “A modeling

method for systematic architecture reconstruction of

microservice-based software systems,” in 25th International

Conference, EMMSAD 2020, Apr. 2020, vol. 387 LNBIP, pp.

311–326. doi: 10.1007/978-3-030-49418-6_21.

[8] F. Tapia, M. ángel Mora, W. Fuertes, H. Aules, E. Flores, and T.

Toulkeridis, “From monolithic systems to microservices: A

comparative study of performance,” Applied Sciences

(Switzerland), vol. 10, no. 17, pp. 1–35, Sep. 2020, doi:

10.3390/app10175797.

5

oid:8827:24900359Similarity Report ID:

3% Overall Similarity
Top sources found in the following databases:

1% Internet database 0% Publications database

Crossref database Crossref Posted Content database

2% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be
displayed.

1
6am6pm.in <1%
Internet

2
University of Johannsburg on 2021-06-09 <1%
Submitted works

3
University of Melbourne on 2022-05-28 <1%
Submitted works

4
"Software Engineering in the Era of Cloud Computing", Springer Scienc... <1%
Crossref

5
acris.aalto.fi <1%
Internet

6
Softwarica College Of IT & E-Commerce on 2021-09-17 <1%
Submitted works

Sources overview

http://6am6pm.in/mylearnings/wp-content/uploads/2012/10/14-PTST-NotesA4.pdf
https://doi.org/10.1007/978-3-030-33624-0
https://acris.aalto.fi/ws/portalfiles/portal/38784383/ELEC_Bekkouche_Edge_Cloud_WCNC.pdf

oid:8827:24900359Similarity Report ID:

Excluded from Similarity Report

Bibliographic material Manually excluded text blocks

EXCLUDED TEXT BLOCKS

Faculty of InformaticsInstitut Teknologi TelkomPurwokertoPurwokerto, Indonesia
Apri Junaidi, Nia Annisa Ferani Tanjung, Sena Wijayanto, Jerry Lasama, Ade Rahmat Iskandar. "Overfitting P...

ittelkom-pwt.ac.idAbstract
Bayu Anggoro Krisnamurti, Yogo Dwi Prasetyo, Condro Kartiko. "Expert System of Land Suitability for Fruit C...

Excluded from Similarity Report

