

Proceedings of 2017 6th International Conference on Software and Computer Applications (ICSCA 2017)

February 26-28, 2017 Bangkok, Thailand

ISBN: 978-1-4503-4857-7

The Association for Computing Machinery 2 Penn Plaza, Suite 701 New York New York 10121-0701

ACM COPYRIGHT NOTICE. Copyright © 2017 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,

+1-978-750-8400, +1-978-750-4470 (fax).

ACM ISBN: 978-1-4503-4857-7

2017 6th International Conference on Software and Computer Applications (ICSCA 2017)

Table of Contents

Preface	XIII
Conference Committees	XIV
Session 1: Software Engineering	
Comparison of Software Product Line Test Derivation	Methods from the
Reuse Viewpoint	1
Sungwon Kang, Jungmin Kim, Haeun Baek, Hwi A	Ahn, Pilsu Jung and
Jihyun Lee	
A Prediction Model for Measurement-Based Timing Ana	ılysis9
Syed Abdul Baqi Shah, Muhammad Rashid and Muh	hammad Arif
Human Stories-A New Written Technique in	Agile Software
Requirements	15
Nguyen Thien Khanh, Jirapun Daengdej and Habib	i Husain Arifin
Development of Encantasya: War of the Four Kingdoms.	23
Angelo C. Arguson and William A. Aldea III	

Linear Lambda Calculus with Non-linear First-class Continuations28		
Shin-ya NISHIZAKI		
Concurrent Test Case Generation from UML Activity Diagram Based on		
Dynamic Programming33		
Sumana Yimman, Suwatchai Kamonsantiroj and Luepol		
Pipanmaekaporn		
A Predictive Model for Successful Software Development Projects with		
Information Technology Strategic Alignment39		
Puttakul Sakul-Ung and Wichian Chutimaskul		
A Database on the Effect of Magnetic Fields on Stem Cells		
Differentiation46		
Azizi Miskon, Jatendra Uslama and Siti Nooraya Mohd Tawil		
Optimizing I/O Performance in ViMo-S Hypervisor with Zero-Copy		
Method50		
Ganis Zulfa Santoso, Song-Woo Sok, Young-Woo Jung and Dong-Jae		
Kang		
Session 2: Data Analysis and Processing		
Performance and Energy Efficiency of Big Data Systems: Characterization,		
Implication and Improvement55		
Yingjie Shi, Lei Wang and Fang Du		

Enhanced (k,e)-Anonymous for Categorical Data62
Surapon Riyana, Noppamas Riyana and Srikul Nanthachumphu
Hybrid Classification Procedure Using SVM with LR on Two Distinctive
Datasets68
Jale BEKTAŞ and Turgay IBRIKCI
Session 3: Information Systems and Engineering
Improved Information Gain Feature Selection Method For Chinese Text
Classification Based On Word Embedding72
Lei Zhu, Guijun Wang and Xianchun Zou
Spam Detection Framework for Android Twitter Application Using Na we
Bayes and K-Nearest Neighbor Classifiers
Aryo Pinandito, Rizal Setya Perdana, Mochamad Chandra Saputra and
Hanifah Muslimah Az-zahra
Comparative Study on Book Similarity Measurement Method based on
Characters in the Body of a Book written in Korean83
Hyun-Ho Lee, Min-Ha Hong, Kee-Won Kim and Seung-Hoon Kim
Reference Scope Identification for Citances by Classification with Text
Similarity Measures87
Jen-Yuan Yeh, Tien-Yu Hsu, Cheng-Jung Tsai and Pei-Cheng Cheng
Information Extraction Method and Its Application in Chinese Equipment

Technical Manual Based on Rule-Matching92
Long Wang, Yanling Qian, Yanbin Liu, Qingzhi Meng and Tengfei Xu
Malang Historical Tourism Guide Mobile Application Based on
Geolocation98
Nurizal D. Priandani, Herman Tolle, Anggi G. Hapsani and Lutfi
Fanani
A Meta-search Group Recommendation Mechanism Based on User Intent
Identification
Xinbao Shao, Qingshan Li, Yishuai Lin, and Boyu Zhou
Session 4: Image Processing
Motion Target Detection Algorithm Based on Monocular Vision107
Yuxi Feng, Qizhou Wu and Guotian He
A Novel Image Encryption Technique using One Dimensional Chaotic Map
and Circular Shift Technique112
Priyajit Biswas, Shyamalendu Kandar and Bibhas Chandra Dhara
Comparison on Two Image Features Weight Adjustment Effect to Relevance
Output Image Retrieval117
Petcharat Pattanasethanon
Study on Thresholding Operation for Efficient 1:N Matching Scheme of
Fingerprint Identification

Young-Jin GOH,	Buhm	LEE and	Kyoung-Min	n KIM

Action Recognition by Silhouette Fusion127	
Samra Naz, Sajid Ur Rehman, Hafsa Asad and Sehrish Saleem	
Automatic Segmentation of Blood Vessels in Retinal Image using	
Morphological Filters132	
SangitaBharkad	
Study on Police Graphic Plotting Technology based on Web	
Dekui Lv, Miao Yu, Jianyu Song, Kuidong Qian and Yanjun Cui	
Classifying Breast Cancer by Using Decision Tree Algorithms144	
Nusaibah Kh. AL-SALIHY and Turgay IBRIKCI	
Enhanced Land Cover and Land Use Information Generation from Satellite	
Imagery and Foursquare Data149	
J. A. A. M Jayanetti, D. A. Meedeniya, M. D. N. Dilini, M. H.	
Wickramapala and J. H. Madushanka	
Session 5: Computer Science and Applications	
Enhancing Constraint based Test Generation by Local Search154	
Mengxiang Lin, Xiaomei Hou, Rui Liu and Linyan Ge	
Betweenness Centrality Updation and Community Detection in Streaming	
Graphs using Incremental Algorithm159	
Akshita Bhandari, Ashutosh Gupta and Debasis Das	

Research on Way of Evaluating Cloud End User Behavior's Credibility
based on the Methodology of Multi-level Fuzzy Comprehensive
Evaluation
Ruilan Yang and Xuejun Yu
The Exploration on Global Village Language—Harmony171
Li Huiyu, Hou Hong and Guo Xiaoqun
Improving Scalability of Apache Spark-based Scale-up Server through
Docker Container-based Partitioning176
Joohyun Kyong, Jinwoo Jeon and Sung-Soo Lim
TrustDocs - Google Docs add-on: Securing Document in Untrusted
Cloud-Based Environment
Mohammadshareefuddin Salash-arong and Natawut Nupairoj
An Application of Composite Nano-Patterns to Compiler Selected Profiling
Techniques
Alexandre dos Santos Mignon and Ricardo Luis de Azevedo da Rocha
An Extensible Component-Based Multi-Objective Evolutionary Algorithm
Framework191
Jan Corfixen Sørensen and Bo Nørregaard Jørgensen
Parallel Frequent Subgraph Mining Algorithm198
He Yanshan, Wang Ting, XieJianli and Zhang Ming

A Personalized Result Merging Method for Metasearch Engine203
Meijia Wang, Qingshan Li, Yishuai Lin, and Boyu Zhou
Modularization of Formal Specifications or Efficient Synthesis of Reactive
Systems208
Masaya Shimakawa, Kenji Osari, Shigeki Hagihara and Naoki
Yonezaki
An Axiomatic Design Framework for Reliability Improvement214
Gabriele Arcidiacono, Alessandro Giorgetti and Andrea Ciappi
Efficient Montgomery AB ² Multiplier for Finite Fields Defined by
Irreducible All-one Polynomials218
Hyun-Ho Lee, Tai-Wan Kim and Kee-Won Kim
Green Vehicle Routing Problem with Heterogeneous Fleet and Time
Windows223
Komarudin, Robin Gui and Arry Rahmawan
Session 6: Communication and Network Engineering
M/M/n/m Queuing Model under Non-preemptive Limited-priority228
Yewen Huang and Shenfen Kuang
Fault Tolerance Design for NoCs: Partial Virtual-Channel Sharing233
Sa'ed Abed, Mohammad AlShayeji, Zahra'a Abdullah and Zainab
Al-Saeed

4G-LTE 1800 Mhz Coverage and Capacity Network Planning using
Frequency Reuse 1 Model for Rural Area in Indonesia239
Alfin Hikmaturokhman, Via Lutfita and Achmad Rizal Danisya
A Near Real Time SMS Grey Traffic Detection244
Thanh van Do, Paal Engelstad, Boning Feng and Van Thuan Do
Algorithm for Multicast Opportunistic Routing in Wireless Mesh
Networks250
Debasis Das and Amritesh Kumar
Web Server Access Trend Analysis based on the Poisson Distribution256
Shigeki Hagihara, Yoshiharu Fushihara, Masaya Shimakawa,
Masahiko Tomoishi and Naoki Yonezaki
Securing Compressed Real-time Audio Codec Based on iLBC and
SM4
Rui Zhang, Zikang Lin and Xiaoming Xiong
Session 7: System Modeling and Simulation
APSEplus: A MATLAB Toolbox for Parametric Energy Simulation of
Reference Buildings267
G. Calafiore, C. Tommolillo, C. Novara and E. Fabrizio
Study of Land Evolution Model Driving by Multi-Attribute Functional
Urban Areas272

Ruixin Song, Wenjun Wang, Pengfei Jiao, Kang Li and Jing Li
Design and Application of a PHEV Simulation Platform277
Zhenhua Jin, Jie Xiong, Zhucheng Li and Yuwei Hua
A Structure-based 3d Cad Model Similarity Assessment Approach281
Xiuyan Zhao, Xianxi Liu and Kaixing Zhang
The Design of the Mixed Load Simulation Test Bench285
Li Hong-guo, Su Shi-jie, Jia Lan-jun, Wang Bo and Meng Jie
An Automated 3D Modelling Application Based on Vertices from 2D Paper
Sketches
ZahrahYahya, Rahmita W. Rahmat, Fatimah Khalid, Amir Rizaan and
Rizal Rahman
A Network-based Model for Solving Inventory Routing Problem in the
Asphalt Industry: A Case Study294
Kant Chareancholwanich and Pisit Jarumaneeroj
Session 8: Biomedical Engineering
Deception Detection of EEG-P300 Component Classified by SVM
Method299
Arjon Turnip, M Faizal Amri, Hanif Fakrurroja, Artha Ivonita
Simbolon, M. Agung Suhendra, and Dwi Esti Kusumandari
The Effectiveness of using Auto Organizational Menu to communicate with

Classmates- A case study of Autism Spectrum Disorders304
Chien-Hsu Chen, Chuan-Po Wang and Chun-Chin Su
Session 9: Supply Chain and Scheduling
Minimizing Makespan in a Single Machine Scheduling Problem with
Deteriorating Jobs and Learning Effects310
Mohammad Mohammadi and Soheyl Khalilpourazari
Application Research of Supplier Evaluation Based on Random
Forest316
Guo Yunxia

Preface

2017 6th International Conference on Software and Computer Applications (ICSCA 2017) is held during Feb. 26-28, 2017 in Bangkok, Thailand.

ICSCA aims to provide a professional platform for academic researchers and industrial practitioners for the interchange of information on the latest development and applications in software and computer applications, and to promote friendship and interdisciplinary research collaborations.

ICSCA received 104 papers from universities, research institutes and industries this year. This volume includes 60 selected papers which were presented at the conference and each contributed paper has been strictly peer-reviewed by reviewers who were collected organizing and advisory Committee members as well as other experts in the field from different countries. The proceedings tend to present to the readers the newest researches results and findings in the field of software and computer applications, which include 9 chapters.

We'd like to give the credit of ICSCA success to the topic coordinators who have devoted their expertise and experience in promoting and in general co-ordination of the activities for the organization and operation of the conference. The coordinators of various session topics have devoted a considerable time and energy in soliciting papers from relevant researchers for presentation at the conference.

Also the organizing committee expresses its entire gratitude to all the authors who presented their works at ICSCA2017 and contributed in this way to the success of this event. Special thanks are due to the authors from abroad for attending the conference and to the reviewers for their support in improving the quality of the papers and finally for the assurance the quality of this volume.

We hope that the contents of this volume will prove useful for software and computer applications researchers and practitioners in developing and applying new technologies and processes.

Prof. Luigi Benedicenti, Feb. 24, 2017

Conference Co-Chairs

Prof. Dr. Vitaliy Mezhuyev, Universiti Malaysia Pahang, Malaysia Prof Luigi Benedicenti, Software Systems Engineering, University of Regina, Canada

Program Chairs

Prof. Masahiko Ooki, Nishinippon Institute of Technology, Japan

Prof. Masahiro Fujita, The University of Tokyo, Japan

Technical Committees

Dr. José Italo Cortez, Benemérita Universidad Autónoma de Puebla, Mexico

Prof. Kim Kyoung-Min, Chonnam National University, Korea

Assoc. Prof. Dr. Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia, Malaysia

Asst. Prof. Mei-Ju Chen, Chienkuo Technology University, Taiwan

Prof. P. Raviraj, Kalaignar Karunanidhi Institute of Technology, India

Assoc. Prof. Houcine Hassan, Polytechnic University of Valencia, Spain

Prof. Dr. Ravil Kudermetov, Zaporizhzhya National Technical University, Ukraine

Dr. Jen-Yuan Yeh, National Museum of Natural Science, Taiwan

Prof. Dr. Eugene Malakhov, Odessa I. Mechnikov National University, Odessa, Ukraine

Assoc. Prof. Turgay IBRIKCI, Cukurova University, Turkey

Prof. Bo Norregaard Jorgensen, University of Southern Denmark, Denmark

Asst. Prof. Mangal Sain, Dongseo University, S. Korea

Assoc. Prof. Angelo C. Arguson, St. Dominic College of Asia, Philippines

Prof. Dr. Thanh van Do, Oslo and Akershus University College, Norway

Dr. Satvabrata Aich. Inie University. Busan. South Korea

Prof. Ricardo Luis De Azevedo Da Rocha, Escola Politécnica da USP, Brazil

Assoc. Prof. Sung-Soo Lim, Kookmin University, Korea

Prof. Xiaoming Xiong, Guangdong University of Technology, China

Asst. Prof. Debasis Das, BITS Pilani- K. K. Birla Goa Campus, India

Asst. Prof. Dr. Shamim Akhter, East West University Bangladesh, Bangladesh

Dr. Ahmad Tajuddin Samsudin, Telekom Research & Development, Malaysia

Assoc. Prof. Joie Ann W. Maghanoy, FEU Institute of Technology, Philippines

Senior Lecturer Dr. Dulani Meedeniya, University of Moratuwa, Sri Lanka

Asst. Prof. Venkadeshan R, Amrita Vishwa Vidhyapeetham University, India

Prof. Dr. N. Ch. SrimanNarayanalyengar, VIT University, India

Assoc. Prof. Dr. Abdeslem Dennai, University of BECHAR, Algeria

Assoc. Prof. Dr. Sungwon Kang, KAIST, Korea

Prof. Saleem Abuleil, Chicago State University, USA

Asst. Prof. Trupil Limbasiya, NIIT University, Rajasthan, India

Prof. Dr. Horst Lichter, RWTH Aachen University, Germany

Assoc. Prof. Dr. Sunny Joseph, K. E. College, India

Assoc. Prof. Peraphon Sophatsathit, Chulalongkorn University, Thailand

Prof. Shian-Chang Huang, National Changhua University of Education, Taiwan

Prof. Sheng-Uei Guan, Xi'an Jiaotong-Liverpool University, China

Prof. Dr. Tanvir Ahmad, Jamia Millia Islamia, New Delhi, India

Asst. Prof. Dr. WONG Ka Chun, City University of Hong Kong, Hong Kong

Dr. Imran Ghani, Monash University Malaysia, Malaysia

Assoc. Prof. Hsien-Tang Lin, Tahwa Institute of Technology, Taiwan

Prof. Dr. Nazri Kama, Advanced Informatics School, Universiti Teknologi Malaysia, Malaysia

Prof. Rusli Abdullah, University Putra Malaysia, Malaysia

Prof. Kazuaki Maeda, Chubu University, Japan

Assoc. Prof. Thumrongrat Amornraksa, King Mongkut's University of Technology Thonburi, Thailand

Dr. Pakawan Pugsee, Chulalongkorn University, Thailand

Dr. Hoshang Kolivand, Universiti Teknologi Malaysia, Malaysia

Prof. Mohamed Bahaj, University Hassan 1st Faculty of Sciences & Technologies Settat Morocco, Morocco

Assoc. Prof. Abu Bakar Md Sultan, Universiti Putra Malaysia

Assoc. Prof. Dr. Tanmay De, National Institute of Technology, Durgapur, India

4G-LTE 1800 Mhz Coverage and Capacity Network Planning using Frequency Reuse 1 Model for Rural Area in Indonesia

Alfin Hikmaturokhman ST3 Telkom Purwokerto DI Panjaitan No.128 Purwokerto Indonesia +62281641629 alfin@st3telkom.ac.id Via Lutfita ST3 Telkom Purwokerto DI Panjaitan No.128 Purwokerto Indonesia +62281641629 13201040@st3telkom.ac.id Achmad Rizal Danisya ST3 Telkom Purwokerto DI Panjaitan No.128 Purwokerto Indonesia +62281641629 rizal@st3telkom.ac.id

ABSTRACT

4G LTE network planning included coverage planning and capacity planning. This research used existing Transceiver Network Base Station (BTS), the utilization of existing BTS in a plan to reduce the cost in terms of infrastructure and applications. The results of the research planning coverage using Frequency Reuse 1 were transmit power value -67.28 dBm and -67.53 dBm, the signal strength value 14.6 dB and 13.89. Capacity planning through simulation user in a rural area connected to the user obtained eNode B was 98.2% and not connected to the user obtained eNode B was 95.2%. Researchers used Software Planning Tool to gather the result.

CCS Concepts

- Information systems → Mobile information processing systems
- Networks→ Network performance modeling
- Networks→ Network simulations

Keywords

4G; LTE; coverage; capacity; Frequency Reuse 1

1. INTRODUCTION

Cellular networks can be classified into different generations, namely, First Generation (Example : AMPS), Second Generation (Example : GSM), Third Generation (Example : UMTS) and Fourth Generation (Example : 4G LTE), see Figure 1 for 4G LTE Architecture [1]. In this paper the researchers studied the planning phases in order to upgrade the mobile operator network, to build a Fourth generation in parallel with the current deployed third generation network.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

ICSCA 2017, February 26-28, 2017, Bangkok, Thailand © 2017 ACM. ISBN 978-1-4503-4857-7/17/02...\$15.00

DOI: http://dx.doi.org/10.1145/3056662.3056675

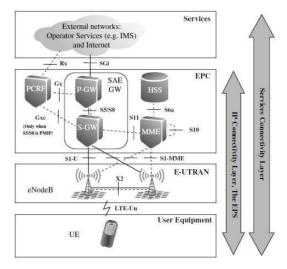


Figure 1. 4G LTE Architecture [1]

Many earlier works had been conducted regarding the 3G radio network planning [2], and our study was related to the 4G capacity and coverage planning for Magelang Rural Area in Indonesia[3], to support equalization technology in Rural Areas Magelang see Figure 2, researchers needed LTE network planning to cover the entire territory of Magelang.

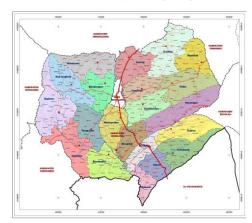


Figure 2. Magelang Map [3]

LTE Network Planning could use the software planning tool, which could be used to perform simulations in order to know how the state of location closer to the original state.[3]

The planning process had some main attributes and factors such as the coordinates of the site, the number of sites, antenna height, direction antennas, antenna tilting, frequency, bandwidth, types of Duplex Technique, types of Frequency Reuse for Coverage Link Budget Purposes, see Figure 3 [4].

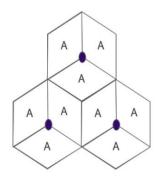


Figure 3. Frequency reuse 1 Schema [3]

The researchers used Reference Signal Receive Power (RSRP) and Signal To Noise Ratio (SINR) to know the Coverage signal strength and Quality signal strength.

RSRP (Reference Signal Receive Power) is the average power of Resource Elements (RE) that carries cell specific Reference Signals (RS) over the entire bandwidth, so RSRP is only measured in the symbols carrying RS. See Table 1 the RSRP Value

Table 1. RSRP Value from Indonesia Operator [5]

Value	Information
-70 dBm to -90 dBm	Good
-91 dBm to -110 dBm	Normal
-110 dBm to – 130 dBm	Bad

SINR is the reference value used in the system simulation and can be defined: Wide band SINR and SINR for a specific sub-carriers (or for a specific resource elements), See Table 2 showed the SINR Value

Table 2. SINR Value from Indonesia Operator [6]

Value	Information
16 dB to 30 dB	Good
1 dB to 15 dB	Normal
-10 dB to 0	Bad

See Table 3 the FDD Band and See Table 4 Link Budget calculation for 4G LTE Frequency Planning

Table 3. FDD Bands [6]

Dond	Frequencies	
Band	UL (MHz)	DL (MHz)
1	1920-1980	2110-2170

2	1850-1910	1930-1990
3	1710-1785	1805-1880
4	1710-1755	2110-2170
5	824-849	869-894
6	830-840	875-885
7	2500-2570	2620-2690
8	880-915	925-960
9	1750-1785	1845-1880
10	1710-1770	2110-2170
11	1428-1453	1476-1501
12	698-716	728-746
13	777-787	746-756
14	788-798	758-768
17	704-716	734-746

Table 4. LTE Downlink Link Budget [7], [8]

Table 4. LTE Downlink Link Budget [7], [0]			
LTE Downlink link budget			
Parameter	Unit	Downlink Calculations	Calculation
Tx RF			
Power	dBm	43	a
TX			
Diversity	ID	2	1
Gain Tx RF Line	dB	3	b
Loss	dBi	1	С
Tx Antenna	UDI	1	
Gain	dB	17	d
Tx AA Gain	dBm	0	e
EIRP	dB	62	f=a+b-c+d+e
Thermal			
Noise	dBm/Hz	-174	g
Subcarier			
Bandwidth	Hz	15000	h
Occupied		600	: 10*50
Subcariers Noise		600	i= 12*50
Figure	dB	6	j
MCS	dBm	QPSK	k
SNR	dB	1.564	1
Fast Fade		3.00	_
Margin	dB	4.5	m
Rx			
Diversity	dB	3	n
HARQ	dB	0	0
Rx Faded			$p = g + {}^{10}LOG$ (h*i) + j + l + m
Sensitifity	dBm	-95.3	- n-o
Rx Antenna			
Gain	dB	7	q
Rx RF Line	ID	0	
Loss	dB	0	r

Effective Rx			
Faded			
Sensitivity	dBm	-102.3	s = p-q+r
Body,			
Vehicle,			
Building			
Loss	dB	10	t
Interference			
Margin	dB	2	u
Log Normal			
margin	dB	6.5	v
MAPL	dB	145.89	w= f -s-t-u-v

Subscriber profiled forecasting and the calculation of the service traffic demand, in addition to the capacity coverage requirements [9],[10]

For this traffic simulation, there were types of user activity

- a. Connected UL+DL, Upload and Download User Activity
- b. Connected UL, Upload User Activity
- c. Connected DL: Download User Activity
- d. Inactive: Not Active User
- e. No Coverage : User did not get best server area or service area.
- f. No Service: User did not get bearer because lower SINR.
- g. Schedule Saturation: Not listed at scheduling.
- h. Resource Saturation

This paper ended up with a proposed for an applicable 4G network to be deployed in the selected cities.

2. RESEARCH METHODOLOGY

The methodology used in telecommunications network planning Long Term Evolution included:

Block Diagram

LTE network planning could be made a block diagram of the design of the arrangement as in see Figure 4.

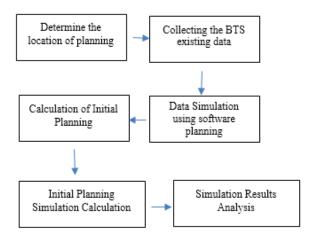


Figure 4. Block Diagram

The following was an explanation of the parts on the block diagram.

Determine the location of planning.

Planning Location was an Rural Area (Magelang City) in Indonesia.

- Collecting the BTS existing data.
- The coordinates of the site.
- The number of sites
- Antenna height,
- Direction antennas and antenna tilting: 65deg 17dBi 2tilt 1800 Mhz
- Type of frequency: 1800 Mhz
- Bandwidth: 10 Mhz
- Types of Duplex Technique : Frequency Division Duplex.
- Type os Frequency reuse (Researcher used Frequency reuse 1 where each cell used the same frequency of the frequency band provided. 1 frequency reuse could be written with 1X1X1 if the type of cell was the cell omnidirectional and sectoral 1X3X1)
- Data Simulation using software planning. Simulations used Software planning to plan the coverage and capacity of existing eNodeB to serve the user.
- Calculation of Initial Planning.
 - Initial calculations included the coverage and capacity planning, the results of this calculation were eNodeB amount.
- Initial Planning Simulation Calculation.
 Simulations were performed to adjust on the calculation the number of parameters eNodeB.
- Simulation Results Analysis

The simulation calculations were compared with the existing BTS, in coverage as well as capacity. Analyses performed were RSRP, SINR and traffic predictions (predictions user served by eNodeB).

3. RESULTS AND DISCUSSION

3.1 BTS Existing Simulation Results

There were two parameters that must have been analyzed, there were RSRP and SINR from coverage aspect. There were user (uplink and downlink) connected with eNodeB from Capacity Aspect. See Figure 5 for the result of the prediction for Coverage Signal Level (RSRP).

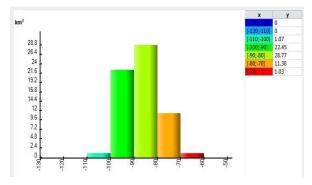


Figure 5 . Result Prediction , Coverage Signal Level

See Figure 6 that the average signal strength was obtained for a prediction use 16 eNodeB was -67.28 dBm, meaning that the signal strength was excellent. Research showed the average quality of the signal obtained for predictions using 16 eNodeB was 14.6 dB, meaning that the quality of the signal was normal. Capacity prediction was usefull to know how many users were served by eNodeB.

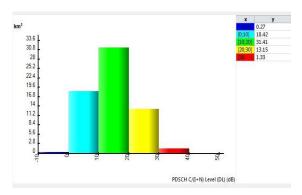


Figure 6. Result Prediction, signal quality Level

See Figure 7 the result form Monte carlo simulation. There were 1.8% users who didn't get service from eNodeB because of signal quality and signal strength. There were 98.2% users who got service from eNodeB. eNodeB services were voip, video conferencing, High Speed Internet dan Mobile Internet Access.

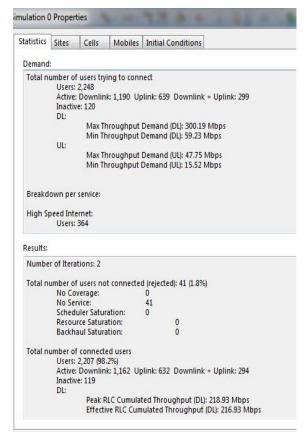


Figure 7. Result Prediction, Monte Carlo Simulation

3.2 Simulation Results Calculation

The results obtained from the first prediction was -67.53 dBm (Coverage By trasnmitter) with Number 9 eNodeB that was used to cover the area of Magelang, See Figure 8

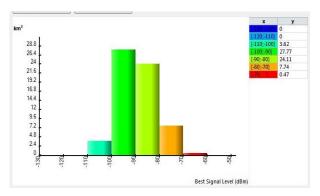


Figure 8 . Result Prediction, Coverage Signal Level

The results of the second prediction was 13.89 dB (Coverage By C (I+N))., See Figure 9

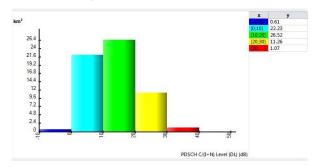


Figure 9. Result Prediction, signal quality Level

The third simulation was simulated users that could be served by 9 eNodeB with traffic predictions. The simulation results were 4.8% traffic users who were not served, users who did not receive the services because of the value of quality and poor signal strength in the area, so that the users were underserved. and 95.2% of users could be served by the eNodeB. Users got service - from eNodeB services such as VoIP, High speed Internet, Uplink and downlink. See Figure 10.

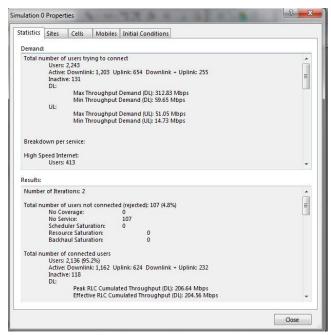


Figure 10. Result Prediction, Monte Carlo Simulation

See Table 5 the comparison result between existing and calculation

Table 5. Existing and Calculation Comparison

Prediction	Existing	Calculation
Coverage Signal	-67.28 dBm	-67.53 dBm
Level		
Coverage By	14.6 dB	13.89 dB
C(I+N)		
Monte Carlo	98.2 %	95.2%

4. CONCLUSION

- 4.1 LTE network planning based on simulation with existing BTS obtained -67.28 dBm for signal strength, 14.6 dB for signal quality value and 98.2% of users could be served by the eNodeB.
- 4.2 Planning LTE network based on a simulation calculation for the values obtained -67.53 dBm signal strength, 13.89 dB for signal quality value and 95.2% of users could be served by the eNodeB.
- 4.3 The number of base stations affected the outcome of the coverage and capacity.

5. RECOMMENDATIONS

- 5.1 The network Planning could be developed by using two different frequencies, 1800 Mhz and 900 Mhz with Carier Agrregation features.
- 5.2 The network planning was done not only between eNodeB and the EU, but also between the eNodeB and the eNodeB.

6. REFERENCES

[1] Motorolla. (2011). LTE RF Planning Guide. Motorolla

- [2] Uke Kurniawan Usman, G. P. (2011). Fundamental Teknologi Seluler Long Term Evolution (LTE). Bandung: Rekasyasa Sains
- [3] Pemerintah Kota Magelang, Laporan Akuntabilitas Kinerja Instansi Pemerintah LAKIP Tahun 2013. Magelang, Indonesia: Bagian Organisasi Setda Kota Magelang, 2014.
- [4] Hikmaturokhman, Alfin, Lingga Wardana. 4G Handbook Edisi Bahasa Indonesia. Jakarta: Penerbit Nulis Buku. 2014
- [5] PT Telekomunikasi Selular, Annual Report. Jakarta, Indonesia: PT Telekomunikasi Selular. 2015.
- [6] Hikmaturokhman, Alfin, Solichah Larasati, and Eka Setia Nugraha. "Analysis Cost 231 MultiWall Model on 4G LTE FDD 1800 and 900 Mhz Femtocell Network Planning." JAICT 1.1 (2016).
- [7] Hikmaturokhman, Alfin, et al. "Analisis Performansi Pada Jaringan Gsm 900/1800 Di Area Purwokerto." Seminar Nasional Aplikasi Teknologi Informasi (SNATI). 2010.
- [8] Suryanegara, Muhammad, and Kumiko Miyazaki. "Towards 4G Mobile Technology: Identifying Windows of Opportunity for a Developing Country." *International Journal of Technology* 3.1 (2012): 85-92.
- [9] Nugraha, Toha Ardi, and Soo Young Shin. "Inter-Cell Interference Coordination in Heterogeneous Networks with Open Access of Small Cells." 2014 Institute of Electronics Engineers of Korea Summer Conference (2014): 446-449.
- [10] Pramono, Subuh, Tommi Hariyadi, and Budi Basuki Subagio. "Performance analysis of transceiver 4×4 space time block coded MIMO-OFDM system." *Information Technology, Computer, and Electrical Engineering* (ICITACEE), 2015 2nd International Conference on. IEEE, 2015.