BAB III

METODE PENELITIAN

3.1 ALAT YANG DIGUNAKAN

Pada penelitian pencarian lokasi user GSM menggunakan teknologi SDR alat yang digunakan terbagi menjadi dua jenis, yaitu *Hardware* dan *Software*. Fungsi dari masing-masing berbeda-beda dan akan dijelaskan di bawah ini :

3.1.1. Hardware

Pada penelitian pencarian lokasi user GSM menggunakan teknologi SDR, alat *hardware* yang digunakan dalam penelitian ini adalah sebagai berikut :

1. PC.

Penggunaan PC atau *Personal Computer* pada penelitian pencarian lokasi user GSM dengan menggunakan teknologi SDR adalah sebagai instalasi *software-software* yang akan digunakan untuk kepentingan penelitian. PC ini juga di gunakan untuk memonitoring berbagai hasil yang akan di dapat dalam Software yang dipakai.

2. Smartphone

Smarthphone pada penelitian pencarian lokasi user GSM menggunakan teknilogi SDR berfungsi sebagai target pencarian lokasi user GSM. Penggunaan *Smartphone* ini selain sebagai target pencarian lokasi user GSM juga sebagai target untuk pencarian Frekuensi yang dipancarkan oleh BTS dengan *smartphone*.

3. RTL-SDR Dongle

RTL-SDR Dongle pada penelitian pencarian lokasi *user* GSM menggunakan teknologi SDR di gunakan untuk menangkap frekuensi frekuensi sinyal yang dipancarkan oleh antena BTS. Sinyal frekuensi yang ditangkap oleh RTL-SDR terlihat di layar monitor PC dengan bantuan *Software*.

4. SIM CARD

SIM CARD pada penelitian pencarian lokasi user GSM menggunakan teknologi SDR ini digunakan sebagai terget pencarian lokasi *user*. SIM CARD yang digunakan dalam penelitian ini milik operator Indosat Ooredoo.

3.1.2. Software

Pada penelitian pencarian lokasi user GSM menggunakan teknologi SDR alat *software* yang digunakan dalam penelitian ini adalah sebagai berikut :

1. Linux Ubuntu

Linux Ubuntu dalam penelitian pelacakan lokasi user GSM dengan teknologi SDR digunakan sebagai Operasi Sistem. Penggunaan OS (Opersi sistem) Linuk Ubuntu karena Linux Ubuntu lebih mudah untuk pemrosesan data dan mendukung pada penelitian. Selain itu *softwaresoftware* yang dipakai dalam penelitian juga mendukung penggunaan linux Ubuntu

2. RTL SDR driver : driver RTL SDR 2832u

Software RTL SDR Driver digunakan dalam penelitian pelacakan user GSM menggunakan teknologi SDR sebagai *intalation hardware* RTL-SDR. Pengggunaan *software* RTL-SDR Driver bertujuan untuk berfungsinya RTL-SDR dengan baik dan tidak mengalami kegagalan dalam menangkap sinyal frekuensi.

3. GNU RADIO

Aplikasi GNU Radio ini adalah aplikasi pendukung teknologi SDR. GNU Radio dalam penelitian pelacakan user GSM menggunakan teknologi SDR adalah sebagai *scanning* sinyal yang dipancarkan pada BTS. Hal tersebut bertujuan untuk mengetahui *range* frekuensi yang dipancarkan oleh BTS.

4. Wireshark

Aplikasi atau *software* wireshark merupakan *software* yang digunakan untuk analisa jaringan pada sistem telekomunikasi. *Software* wireshark digunakan untuk menganalisis data-data yang yang melintas

pada sebuah jaringan telekomunikasi. Pada penggunaan *software* wireshark dalam penelitian pelacakan user GSM menggunakan teknologi SDR ini berfungsi untuk mendapatkan parameter-parameter yang dipakai pada sebuah pancaran frekuensi BTS. Parameter-parameter yang didapat misalkan LAI, MCC, Cell Id dan lain sebagainya untuk melakukan perhitungan.

5. GQRX

GQRX meupakan aplikasi ataupun *softaware* yang dikembangkan oleh perusahaan Piotr Krysik yang digunakan untuk *scanning frekuensi* gelombang *signal* di sekitar area pelacakan. *Software* ini memunculkan tampilan frekuensi yang berupa signal analog yang terdapat di tampilan *software* tersebut.

6. Kalibrate

Kalibrate adalah aplikasi yang dikembangkan oleh github untuk mendeteksi frekuensi signal GSM yang berada di sekitar penelitian dan adapun aplikasi ini mengetahui *channel* yang dipakai pada sebuah jaringan GSM.

3.2 ALUR PENELITIAN

Pada penelitian pelacakan pengguna GSM menggunakan teknologi SDR penulis membagi alur menjadi beberapa tahap yakni yang pertama adalah *study literatur*, tahap yang selanjutnya adalah Konfigurasi SDR, dan tahapan selanjutnya pencarian frekuensi, tahap berikutnya melakukan perhitungan dengan metode Trilaterasi . Kemudian tahap selanjutnya adalah hasil pencarian lokasi *user* GSM. Kemudian tahap berikutnya adalah mengukur selisih antara metode trilaterasi dengan GPS satelit dan GPS ponsel. Selanjutnya Tahapan terakhir adalah analisa dan kesimpulan

Gambar 3 2 Alur Penelitian

3.4 METODE PERHITUNGAN

Pada penelitian pelacakan user GSM menggunakan teknologi SDR ini menggunakan metode trilateresasi. Metode trilaterasi ini merupakan metode ataupun formulasi yang digunakan untuk melakukan perhitungan titik lokasi dengan tingkat. Metode trilaterasi ini membuthkan tiga titik point acuan, dan jarak dari titik ke acuan ke target yang akan dihitung merupakan parameter yang dibutuhkan pada formulasi trilaterasi.

3.4.1 METODE TRILATERASI

Trilateration atau trilaterasi merupakan metode untuk menentukan posisi objek (*smartphone*) berdasarkan pengukuran jarak secara simultan dari tiga buah titik *access point* (BTS) yang berada di sekitar lokasi. Metode trilaterasi tidak perlu untuk pengukuran sudut antena melainkan hanya memerlukan tiga titik *access point* (BTS) sebagai titik acuan untuk mengukur koordinat yang akan dihitung. Dan metode trilaterasi juga membutuhkan jarak antara BTS ke ponsel untuk mendapatkan hasil perhitungan yang akurat.

3.5. SCANARIO PENELITIAN

Dalam penelitian ini akan dilakukan 30 kali percobaan pencarian lokasi *user* GSM dengan berbagai tempat. Lokasi tempat dibagi menjadi dua yakni *indor* dan *outdor*. Pembagian *indor* dan outdor ini bertujuan untuk mengetahui akurasi dari metode yang dilakukan oleh peneliti. Selanjutnya hasil dari sepuluh percobaan yang dilakukan dengan metode yang ditulis peneliti akan dibandingkan dengan metode estimasi lokasi GPS. Perbandingan dengan metode yang digunakan oleh peneliti dan metode GPS ini bertujuan untuk mengetahui perbedaan koordinat lokasi antara metode yang digunakan oleh peneliti dengan alat GPS dan ponsel.

3.6 Alur akusisi data SDR

Pengambilan data SDR untuk melakukan perhitungan dengan metode trilaterasi memerlukan beberapa tahapan. Tahapan yang pertama adalah penginstalan software SDR. Setelah semua penginstalan selesai dilanjutkan dengan *scaning* frekuensi disekitar penelitian menggunakan aplikasi kalibrate. Selanjutnya *scaning* frekuensi dan decoding menggunakan software GQRX dan GR-GSM. Tahapan berikutnya adalah pengambilan data BTS dengan menggunakan *software* wireshark. Langkah yang terakhir yakni melakukan perhitungan trilaterasi dengan menggunakan data-data yang telah di dapatkan pada software wireshark.

Gambar 3.6.1. Alur Akusisi data SDR

3.6.1 Penginstalan software RTL-SDR

Langkah yang pertama di lakukan adalah dengan mendownload *software* RTL SDR dongle di www.airspy.com lalu setelah mendownload *software*. Langkah yang kedua adalah dengan mengextrak file yang telah di*download*. Langkah yang ketiga adalah menginstal RTL SDR seperti pada gambar di bawah ini:

Gambar 3.6.1. Instalasi RTL SDR.

Setelah muncul gambar di seperti gambar di atas langkah selanjutnya adalah *mendownload software* zadig. Setelah melakukan donwload *software* zadig maka selanjutnya penginstalan *software* zadig seperti pada gambar berikut ini

USB Keyboard (Interface 1)		✓ ☐ Edir
Driver WinUSB (v6. 1. 7600.	16385) 🔶 WinUSB (v6. 1. 7600. 16385)	More Information WinUSB (libusb)
JSB ID 046D C31D 01	L 	libusb-win32 libusbK

Gambar 3.6.2 penginstalan zadig

Pada proses penginstalan zadig ini caranya adalah buka *software* zadig kemudian klik *options* setelah itu *klik list* pada urutan pertama options.maka akan muncul tampilan seperti gambar diatas. Setelah semua selesai klik *reinstall driver* guna menginstal zadig tersebut. Proses penginstalan jadi dapat dilihat pada gambar di bawah ini

vice Option Driver	Installation				
USB Keyboard	The driver was	installed successfully.			✓ ☐Edit
Driver WinL				Clase	oformation (libusb)
				Close	in32
		Reinstall Driver	-	libusbK WinUSI	3 (Microsoft)

Gambar 3.6.3 software telah di instal

Software zadig ini berfungsi untuk menjalakan RTL SDR di *Software* RTL SDR kalau tidak menggunakan zadig ini maka proses pencarian sinyal tidak akan jalan karena *software* RTL SDR tidak membaca keberadaan dari *hardware* RTL SDR donglenya. Setelah semua penginstalan selesai maka langkah selanjutnya adalah buka kembali file SDR yang sudah di*instal* diatas kemudian klik simbol SDR maka akan muncul tampilan seperti gambar di bawah ini. Sebelum muncul gambar seperti di bawah ini ubahlah *source*nya terlebih dahulu ke RTL- SDR USB untuk mengetahui sinyal radio yang akan ditangkap. Kemudian setelah diubah tampilan maka akan *software* SDR sudah siap digunakan, seperti pada tampilan gambar di bawah ini

Gambar 3.6.4 Tampilan software SDR yang siap digunakan

Pada gambar di atas adalah tampilan pengujian RTL SDR yang sudah siap di gunakan. Tampilan tersebut menunjukan bahwa tertangkapnya sinyal-sinyal radio.Pada tampilan SDR juga dapat kita atur sesuai dengan sinyal yang akan kita ambil.

3.6.1.1. Penginstalan Software Wireshark

Pada tahap selanjutnya adalah proses penginstalan dari *software wireshark*. Pada proses penginstalan *wireshark* sendiri menggunakan Oprasi sistem Ubuntu linux untuk dapat tersambung dengan aplikasi gr-gsm. Wireshark sendiri juga berfungsi *capture* data- data yang ada di GSM yang di kirimkan oleh BTS. Sehingga dapat memunculkan hasil yang bisa di pakai untuk penelitian ini.

Berikut adalah beberapa langkah dari proses instalasi di ubuntu

Æ	ι	abpsd@labpsd-	H110M-DS2: ~	Q		₿	×
labpsd@labpsd-H [sudo] password Hit:1 http://id Hit:2 http://id Hit:3 http://id Hit:4 http://se Reading package Building depend Reading state i 7 packages can labpsd@labpsd-H	110M-DS2:-\$ suc for labpsd: .archive.ubuntu .archive.ubuntu curity.ubuntu.c lists Done ency tree Do nformation D be upgraded. Ru 110M-DS2:-\$ suc	do apt update u.com/ubuntu u.com/ubuntu com/ubuntu ja one un 'apt list do apt instal	jammy InReleas jammy-updates jammy-backport ammy-security I upgradable' wireshark	se InRelea InReleas to see	ase Lease se		

Gambar 3.6.1.1 Proses penginstalan wireshark

Pada penginstalan ketik *sudo apt update* di terminal ubuntu linux kemudian ketik *sudo apt instal wireshark* sesuai gambar diatas setelah itu tunggu proses penginstalan sampai muncul tampilan *yes* dan *no*. Langkah selanjutnya adalah tekan *yes* pada terminal dan tunggu hingga prosesnya selesai. Dan wireshark sudah diinstal maka tampilannya seperti pada gambar di bawah ini

Gambar 3.6.1.2 hasil penginstalan wireshark

3.6.1.2 Penginstalan GR-GSM

Pada tahap selanjutnya adalah proses penginstalan gr-gsm. Proses penginstalan gr-gsm juga di lakukan di OS ubuntu linux. Pada proses ini menggunakan script seperti

sudo apt install -y cmake autoconf libtool pkg-config build-essential python-docutils libcppunit-dev swig doxygen liblog4cpp5-dev gnuradio-dev gr-osmosdr libosmogsm10 libosmosdr-dev libosmocodec0 libosmogsm-doc libosmosdr0 libosmocodec-doc libosmosdr-dev libosmocoding0 libosmocoding-doc libosmocore libosmocore11 libosmocore-dev libosmocore-doc libosmocore-utils libosmoctrl0 libosmoctrl-doc liborc-0.4-dev

```
!
```

export

PYTHONPATH=/usr/local/lib/python3/dist-

packages/:\$PYTHONPATH

```
cd $HOME
```

!

1

```
mkdir rf; cd rf
  !
 git clone https://github.com/velichkov/gr-gsm.git
  !
 cd gr-gsm
  !
 mkdir build
  !
 cd build
  !
 cmake..
  !
 mkdir $HOME/.grc_gnuradio/ $HOME/.gnuradio/
  !
 Make
  !
 sudo make install
  !
 sudo ldconfig
  !
 sudo
                                /usr/local/lib/python3/dist-packages/grgsm/
             ср
                       -r
/usr/lib/python3/dist-packages/
```

Pada tahap selanjutnya adalah proses penkoneksian gr-gsm dengan GNURadio. Pada proses ini memerlukan beberapa *build* di dalam terminal guna terkoneksinya *apps* gr-gsm dengan gnu radio. Yang pertama adalah *build* gr-gsm dengan cara seperti berikut ini yang pertama ketik perintah cd gr-gsm selanjutnya *cd apps* setelah itu ketik perintah *gnuradio-conpanion grgsm_livemon.grc*. setelah langka diatas d lakukan maka akan muncul tampilan pada gambar 2,9. Pada proses ini dapat dilihat pada gambar di bawah ini

ΓŦ	labpsd@labpsd-H110M-DS2: ~/gr-gsm/apps	Q	Ξ			×
Labps Labps gnura Labps Comma com Try: Labps Comma com Try: Labps Comma com	<pre>d@labpsd-H110M-DS2:=\$ cd gr-gsm d@labpsd-H110M-DS2:=/gr-gsm\$ cd apps d@labpsd-H110M-DS2:=/gr-gsm/apps\$ gnuradion.companion dion.companion: command not found d@labpsd-H110M-DS2:=/gr-gsm/apps\$ gnuradio.companion nd 'gnuradio.companion' from deb gnuradio (3.10.1.1 sudo apt install <deb name=""> d@labpsd-H110M-DS2:=/gr-gsm/apps\$ gnuradio.companion nd 'gnuradio.companion' not found, did you mean: mand 'gnuradio.companion' not found, did you mean: mand 'gnuradio.companion' from deb gnuradio (3.10.1.1 sudo apt install <deb name=""> d@labpsd-H110M-DS2:=/gr-gsm/apps\$ gnuradio (3.10.1.1 sudo apt install <deb name=""> d@labpsd-H110M-DS2:=/gr-gsm/apps\$ gnuradio.companion nd 'gnuradio.companion' not found, did you mean: mand 'gnuradio.companion' not found, did you mean: mand 'gnuradio.companion' not found, did you mean: mand 'gnuradio.companion' from deb gnuradio (3.10.1.1 sudo apt install <deb name=""></deb></deb></deb></deb></pre>	grg grgs -2) grgs -2) gr-g gr-g -2)	ısm_li .m_li∖ .m_li∖ ısm_li	.vemon. /emon.; /emon.	.grc grc grc .grc	
labps s.grc	d@labpsd-H110M-DS2:-/gr-gsm/apps\$ gnuradoio.companion	grg	sm_li	vemon	_head	lles
gnura Labps Comma com Try:	doio.companion: command not found d@labpsd-H110M-DS2:~/gr-gsm/apps\$ gnuradio.companion nd 'gnuradio.companion' not found, did you mean: mand 'gnuradio-companion' from deb gnuradio (3.10.1.1 sudo apt install <deb name=""></deb>	grgs -2)	m_liv	/emon.	grc	

Gambar 3.6.2.1 proses penginstalan gr-gsm

Gambar 3.6.2.2 instalasi gr-gsm di gnuradio

3.6.1.3 Penginsalan Kalibrate

Pada proses selanjutnya adalah penginstalan kalibrate di OS linux. Fungsi dari aplikasi kalibrate sendiri adalah mengetahui *channel* yang berada di sekitar lingkungan penelitian, daya atau power yang diterima pada area sekitar penelitian, dan frekuensi yang dipancarkan pada BTS yang dipancarkan di sekitar area penelitian. Pada proses penginstalan ini peneliti menuliskan perintah *sudo apt install* kalibrate-rtl. Kemudian tekan enter.

Setelah proses penginstalan selesai peneliti mencoba beberapa kali untuk mengambil *sample* data dengan menggunakan perintah *kal* –*s GSM900* –*g 40*. Perintah ini menunjukan frekuensi GSM yang dipakai pada GSM 900 dan perintah –g adalah gain yang digunkan dalam proses ini. Untuk *gain* maximal adalah 50 db. Pada proses ini peneliti menemukan hasil dari scanning data GSM yang di sekitar kita yakni sebagai berikut. Dari proses akusisi data, hanya frekuensi 953.2, 935.2 dan 951,2 yang bisa didecodingkan.

3.7 Proses Pengambilan Data Pada RTL SDR

Pada proses pengambilan data RTL-SDR ini dibagi beberapa tahapan untuk mendapatkan hasil longtitude dan latitude lokasi user GSM yang dicari. Tahapan yang pertama adalah tahapan *scanning* frekuensi di sekitar lokasi pencarian user gsm menggunakan gqrx. Lalu tahapan yang kedua menggunakan GNU radio yang dikombinasikan dengan gr-gsm_livemon untuk decoding sinyal di sekitar lokasi merubah menjadi kode-kode ASCI dan tahapan selanjutnya adalah menggunakan wireshark sebagai *capture* data GSM yang *tersniffing* dan tahapan yang terakhir adalah pencarian lokasi menggunakan *web phone tracker* berdasarkan MNC LAI MNC.

3.7.1 Scanning menggunakan GQRX

Proses scanning *signal* merupakan tahapan awal dalam menentukan sebuat lokasi user gsm. Scanning frekuensi pada penelitian ini sudah ditentukan sebelumnya. Pada penelitian ini menggunakan frekuensi sebesar 953.2 Mhz. Frekuensi ini terdeteksi dari aplikasi kalibrate-rtl sdr

Gambar 3.7.1.1 Hasil scanning frekuensi

Pada gambar 4.2.1.1 menjelaskan dan membuktikan adanya *range* frekuensi 953.2 Mhz di sekitar area penelitian hal ini ditunjukan dengan adanya gelombang analog pada tampilan gqrx. Frekuensi ini yang nantinya akan dipakai oleh peneliti untuk melakukan pencarian lokasi user gsm. Setelah frekuensi terdeteksi langkah selanjutnya adalah peneliti menyimpan dalam gqrx menjadi file yang nantinya akan didecodingkan dengan menggunakan Grgsm_livemon.

3.7.2 Decoding menggunakan GNU Radio dan gr-gsm_livemon

Proses Decoding menggunakan GNU Radio merupakan proses kebalikanya *encoding* yaitu konversi data yang telah dikirimkan oleh *transmiter* menjadi pesan yang dimengerti oleh *reciver*. Pengembang dari gr-gsm yakni Piotr Krysik membuatkan *file* untuk pengujian sinyal GSM, yang memudahkan melakukan ujicoba sniffing *signal* GSM yaitu dengan malakukan running *file* di gr-gsm yang tersimpan di dalam dokumen gr-gsm[19].

Dalam program penelitian ini telah di*setting* untuk *signal* GSM yang didecodingkan mempunyai *range* frekuensi 951.1-953,2 Mhz. *Range* frekuensi ini didapatkan dari hasil *scanning signal* menggunakan *software* Gqrx dan kalibrate.

Gambar 3.7.2.1 Decoding Sginal GSM

Pada gambar 4.2.2.1 ini terdapat dua gambar yakni graffik frekuensi yang telah didecodingkan dan gambar yang kedua adalah sebuah kodekode ASCII yang merupakan juga hasil decoding. Setelah melakukan decoding *signal* GSM kemudian langkah selanjutnya adalah melakukan analisa signal GSM dengan menggunakan *software* wireshark.

3.7.3 Capture menggunakan Wireshark

Capture signal GSM menggunakan *wireshark* merupakan proses analisa signal GSM yang telah di decodingkan dengan menggunakan GNU radio. Proses analisa sinyal ini akan membaca atau menampilkan data-data variabel yang berupa kode ASCII yang kemudian akan ditampilkan di *wireshark* berupa bilangan *binner hexa* dan *gylph* sehingga kode-kode tersebut lebih mudah dipahami dan dimengerti.

Gambar 3.7.3.1 Data Tampilan di wireshark

Pada gambar 4.2.3.1 merupakan tampilan dari variabel-variabel yang telah diubah dalam bentuk bilangan *binner hexa* dan *gylph*. Kede atau bilangan binner ini merupakan suatu data yang ada dalam GSM. Dari banyaknya data-data yang ada dalam *wireshark* tersebut ada satu data yang menjadi tujuan dari proses *sniffing signal* gsm untuk mencari *Mobile Network Code* (MNC), (LAI) dan *Cell ID* yang berguna untuk menentukan pencarian lokasi GSM. Data tersebut terletak pada bagian sistem informasi 3 yang berisikan tentang *Mobile Network Code* (MNC), *Local area indentification* (LAI) dan *Cell Identification* (Cell ID) yang digunakan dalam pencarian lokasi *user* GSM.

File Four Alew Go Ca	pture <u>Anaryze Staustics releptiony wireless roois</u> <u>H</u> eip
	🛅 🖹 🗳 🔶 🛎 春 🖢 🥃 🗐 🍳 Q, Q, 🖽
📕 gsmtap	+
Destination	Protocol Lengtr Info
127.0.0.1	GSMTAP OI (CCCH) (RR) Immediate Assignment GSMTAD 81 (CCCH) (RR) Daning Request Type 1
127.0.0.1	GSMTAP SI (CCCH) (RR) Paging Request Type 1
127.0.0.1	GSMTAP 81 (CCCH) (RR) Paging Request Type 1
127.0.0.1	GSMTAP 81 (CCCH) (RR) Paging Request Type 1
127.0.0.1	GSMTAP 81 (CCCH) (RR) Paging Request Type 1
127.0.0.1	GSMTAP 81 (CCCH) (RR) System Information Type 3
107 0 0 1	CONTAD 01 (CCCU) (DD) Daging Doquaet Type 1
Call Identity CI	(47440)
Coll CT: 0x4422	(17443)
 Location Area Iden 	tification (LAT)
✓ Location Area I	dentification (LAI) - 510/11/25331
Mobile Count	ry Code (MCC): Indonesia (510)
Mobile Netwo	rk Code (MNC): Excelcomindo (11)
Location Area	a Code (LAC): 0x62f3 (25331)
Control Channel De	scription
Cell Options (BCCH)	
	00 00 00 00 00 08 00 45 00 ······E·
0020 do 00 00 00 op 10 00	00 21 Te 42 02 04 01 00 00 22
0030 de 00 00 08 ab 4e	a_2 1f 85 /8 7/ a_0 a_0 80 a_0 A_2
0040 10 11 02 13 02 00	0a 11 05 40 10 00 00 00 42
0000 00	
	() a lot i politica and picture long (100 and) politica (0.00) i politica (100 and)

🗋 🥥 🌋 – Cell CI (ɑsm a....ll. ci). 2 byte::: Packets: 352 · Displayed: 352 (100.0%) · Dropped: 0 (0.0%) 🗄 Profile: Defaul

Gambar 3.7.3.2 Capture wireshake

Pada gambar 3.7.3.2 menjelaskan bahwa hasil *capture* menggunakan *wireshark* menunjukan bahwa disistem informasi 3 mendapatkan hasil berupa Cell ID, LAI, MNC dan LAC. Hasil dari *capture* berupa MCC (*Mobile country code*) merupakan sebuah kode dari sebuah negara hal ini indonesia menggunakan kode nomer 510. Selanjutnya adalah MNC (*Mobile Network Code*) merupakan sebuah kode dari sebuah operator. Kode- kode dari setiap operator berbeda-beda. Dari kode yang didapatkan bahwa kode tersebut milik dari operator XL indonesia. kode dari xl indonesia menunjukan kode nomer 11. Kode yang selanjutnya adalah kode dari LAC (*Local Area Code*). *Local area code* sendiri merupakan kode nomer 25331 pada bilangan *hexza decimal*. Dan yang

terakhir adalah Cell ID atau Cell *identifitation* merupakan code *cell* pada BTS.

3.7.4 Pencarian lokasi BTS menggunakan menggunakan web gps tracker

Proeses pencarian selanjutnya adalah proses pencarian dengan aplikasi pada *website* dengan alamat http://www.cell2gps.com/.web tersebut digunakan untuk mencari titik koordinat bts dengan mengetahui parameter yang telah ters*niffing* dan di*decoding*kan dengan langkah sebelumnya. Untuk mencari lokasi BTS sendiri memerlukan parameter yakni, LAC, MNC, dan Cell id. Untuk mendapatkan LAC MNC dan Cell ID kita gunakan data-data yang ada pada *software wireshark*.

* All fieds are required, otherwise errors may occure.

Mobile Country Code	510				
Mobile Network Code	11				
Location Area Code	25225				
Cell ID	15383				
Search Clear					
Lat=-7.426192 Lon=109.237587					
view more cell towers in this area, click here.					

What is GSM tracker

er is an online location service based on cell tower triangulation technology which uses MC II D to determine the position of a mobile device.

fic Satellite AIS - Truly Global Vessel Tracking		(
ility with terrestrial and satellite AIS coverage. business.marinetraffic.com/satellite/ais-	OPEN	

Gambar 3.7.4.1 Proses pencarian user GSM

Pada gambar 4.2.4.1 menjelaskan bahwa data yang dipakai adalah MNC 11, MCC 10, LAC 25225 dan *cell id* 15383. Data-data tersebut nantinya akan kita cari penggunakan *website* diatas. Hasil dari pencarian lokasi GSM menunjukan sebuah *longtitude* dan *latitude* sebuah BTS. Untuk *longtitude* yang didapat adalah sebesar 7.426182 dengankan latitude 109.247587. *Longtitude* dan *latitude* ini tepat berada di sekitar area lokasi *user* GSM berada ataupun lokasi peneltian yang digunakan.

Lokasi tersebut berada di daerah purwokerto selatan. Kode tersebut akan dikombinasikan dengan metode trilaterasi nantinya.

Gambar 3.7.4.2 Lokasi Salah satu BTS

Gambar 3.7.4.3 Peta lokasi BTS 1

Pada Gambar 3.7.4.2, dan Gambar 3.7.4.3 merupakan salah satu data lokasi BTS yang akan digunakan dalam melakukan pencarian lokasi penelitian. Lokasi dari salah satu BTS berada di Purwokerto tepatnya di JI Purwobekti, Purwokerto. BTS tersebut ditemukan berdasarkan hasil pencarian menggunakan data yang ada pada *wireshark* dengan mencantumkan data yang ada pada gambar 3.7.4.1.

Gambar 3.7.4.4 lokasi BTS 2

Pada gambar 3.7.4.4 merupakan lokasi dari BTS 2 yang digunakan dalam penelitian ini. Pada gambar tersebut terletak di Jalan Jendral Sudirman Purwokerto kab Banyumas. BTS 2 merupakan titik acuan dari proses perhitungan trilaterasi.

Gambar 3.7.4.5 Gambar Lokasi BTS 3

Pada gambar 3.7.4.5 merupakan sebuah peta lokasi dari sebuah BTS. Lokasi tersebut merupakan tempat keberadaan BTS yang dipakai dalam melakukan proses perhitungan trilaterasi. Gambar 3.7.4.5 ini dijadikan titik acuan untuk melakukan perhitungan trilaterasi. Letak dari BTS berada di JI Saudagaran Purwokerto Kab Banyumas.