Region-based annotation data of fire images for intelligent surveillance system

Wahyono, Wahyono and Dharmawan, Andi and Harjoko, Agus and Chrystian, Chrystian and Adhinata, Faisal Dharma Region-based annotation data of fire images for intelligent surveillance system. Data in Brief.

[img] Text (Jurnal)
Fix Data in Brief.pdf

Download (805kB)
[img] Text (Peer Review)
[FIX] Peer Data in Brief.pdf

Download (1MB)
[img] Text (Similarity)
Similarity Data in Brief terbit.pdf

Download (951kB)


This paper presents fire segmentation annotation data on 12 commonly used and publicly available “VisiFire Dataset” videos from This annotations dataset was obtained by per-frame, manual hand annotation over the fire region with 2684 total annotated frames. Since this annotation provides per-frame segmentation data, it offers a new and unique fire motion feature to the existing video, unlike other fire segmentation data that are collected from different still images. The annotations dataset also provides ground truth for segmentation task on videos. With segmentation task, it offers better insight on how well a machine learning model understood, not only detecting whether a fire is present, but also its exact location by calculating metrics such as Intersection over Union (IoU) with this annotations data. This annotations data is a tremendously useful addition to train, develop, and create a much better smart surveillance system for early detection in high-risk fire hotspots area.

Item Type: Article
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Depositing User: Faisal Dharma Adhinata, S.Kom., M.Cs.
Date Deposited: 10 Feb 2023 23:20
Last Modified: 05 Oct 2023 01:09

Actions (login required)

View Item View Item