BAB III METODE KERJA

3.1 Waktu dan Tempat

Proses menentukan lokasi dilakukan pada saat magang di PT POCA dengan acuan file exel yang telah dishare oleh pembing lapangan yang berisi site name, site id, alamat site, *longlat, azimuth*, dll, desain antena dan frekuensi yang akan digunakan pada *software pathloss*. Yang dimana nantinya akan dicari untuk perhitungan pada *link budget* yang dapat dilitah pada hasil parameter-parameter simulasi pada *pathloss*. Kemudain pada parameter-parameter yang diperoleh pada *software pathloss* tersebut yang nantinya akan di gunakan untuk perhitungan tersebut akan diketahui hasil yang diperoleh.

3.2 Alat dan Bahan

Perancangan jaringan transmisi *microwave* pada *site* Bakalan Polokarto dan *site* Polokarto ini dibutuhkan perangkat keras dan perangkat lunak agar sistem perancangan dan hasil perancangan dapat hasil yang optimal.

1. Perangkat keras

- a. Laptop dengan Processor Intel CORE i5
- b. Memori 8 GB

2. Perangkat lunak

- a. Sistem Operasi Windows 11 (64 bit)
- b. Pathloss 5.0
- c. Google earth

3.3 Metode dan Proses Kerja

3.3.1 ALUR KERJA

Pada alur kerja ini terdapat beberapa poreses yang akan dilakukan untuk perancangan jaringan trasmisi *link microwave* pada *site* Bakalan Polokarto dan *site* Polokarto. Bagan *flowchart* ini menampilkan proses dari awal hingga akhir penelitian.

Gambar 3.3.1 Flowchart Alur Penelitian

3.3.2 PERANCANGAN SISTEM

Pada perancangan sistem untuk jaringan tasmisi *link microwave* pada *site* Bakalan Polokarto dan *site* Polokarto yang diawali dengan pengumpulan data. Data yang diperoleh untuk kebutuhan perancangan tersebut membutuhkan *longitude, latitude,* jenis antenna dan radio yang digunakan. Data tersebut nantinya akan dimasukan ke *software pathloss* 5.0 dan *google earth*. Kemudian melakukan sistem pembuatan pada *software pathloss* 5.0 yang dimana untuk mengetahui parameter-parameter yang digunakan sesuai yang di inginkan atau tidak. Selanjutnya proses simulasi tersebut akan didapatkan hasil *report* berupa *link budget*. Lalu yang nantinya akan dilakukan Analisa perhitungan pada *Gain,* FSL, EIRP, IRL, *Fading Margin, Unavaibility,* dan *Avaibility.*

Gambar 3.3.2 Flowchart Perancangan Link Microwave

3.3.2 ALUR PENELITIAN

Penulis menggunakan 1 *link* hop yaitu *site* Bakalan Polokarto dan *site* Polokarto sebagai lokasi perancangan *link microwave* ini. Data dari kedua lokasi *site* dapat dilihat pada table 3.3.1 data tersebut digunakan dalam perancangan *link microwave* pada *software Pathloss* 5.0.

Tabel 3.3.1 Data site jaringan

Site Name	Latitude	Longitude	Elevasi	Tower <i>Heights</i>
Bakalan	7°37'56 36"S	110°52'25 91"E	100.65 m	30 m
Polokarto	7 57 50.50 5	110 <i>32 23.9</i> 1 E	100.05 III	50 m
Polokarto	7°37'38.84"S	110°53'38.83"E	113.78 m	55 m

Jarak dari *site* Bakalan Polokarto ke *site* Polokarto yaitu dengan jarak 2 Km dengan kondisi geografis yang cenderung landai dengan selisih elevasi yang ridak

terlalu signifikan. Kondisi tersebut menjadikan lokasi ini cukup cocok untuk membuat komunikasi data menggunakan gelombang mikro yaitu dengan antenna *microwave*.

Terdapat pada gambar 3.3.3 *path* profil dari perancangan *link microwave* ini yang diambil dari pera *Google earth*. Dapat diketahui lingkungan sekitar dari kedua *site* terdapat pemukiman dan lading warga dengan ketinggia yang tidak terlalu tinggi menjadikan *site* Bakalan Polokarto dan *site* Polokarto *Line Of Sight* (LOS).

Gambar 3.3.3 Lokasi Perancangan Jaringan

Melakukan sebagai *near end, site* Bakalan Polokarto memiliki *latitude* 7°37'56.36"S dan *longitude* 110°52'25.91"E yang terletak di desa Bakalan, Kecamatan Polokarto, Kabupaten Sukoharjo. Ketinggian *tower* di *site* Bakalan Polokarto yaitu 30 meter dari permukaan tanah. Lokasi dari *site* Bakalam Polokarto yang diambil dari peta *Google earth* dapat dilihat pada gambar 3.4.

Gambar 3.3.4 Lokasi site Bakalan Polokarto

Selanjutnya menggunakan lokasi *site* Polokarto yang diambil dari peta *Google earth*. Terletak di Kecamatan Polokarto, Kabupaten Sukoharjo untuk *site* Polokarto sebagai *far end* memiliki *latitude* 7°37'38.84"S dan *longitude* 110°53'38.83"E yang terdapat pada gambar 3.3.5 Untuk ketinggian tower di *site* Polokarto yaitu 55 meter.

Gambar 3.3.5 Lokasi site Polokarto

3.3.2 SPESIFIKASI PERANGKAT

Perancangan *link microwave* pada *site* Bakalan Polokarto dan *site* Polokarto menggunakan beberapa perangkat pendukung. Berikut table 3.3.2 perangkat perancangan *link microwave*.

No.	Perangkat	Jenis	Keterangan
1.	Antenna	WTG0.6-212D	Diameter 0.6, <i>Gain</i> 40.40 dBi
2.	Transmission Line	EW220	Elliptical Waveguide
3.	Microwave	RTN 600 23G_SP_128QAM_2	Frequensy range 21.200 – 23.600 GHz

Tabel 3.3.2 Perangkat link microwave

3.3.3 PERANCANGAN LINK MICROWAVE

Dalam melakukan perancangan *link microwave* dari *site* Bakalan Polokarto ke *site* Polokarto dengan menggunakan *software Pathloss* 5.0. Tahapan perancangan yaitu melakukan pengisian file *Shuttle Radar Topography Mission* (SRTM) yang didalamnya berisi data peta dan kontur tanah pada suatu daerah. Peta SRTM berfungsi dalam memetakan dan mengetahui kontur tanah pada lokasi perancangan *link microwave*. Ditunjukan pada gambar 3.3.6 dan gambar 3.3.7.

Configure Geographic System - Dimas.p5g X					
Files					
Site coordinates Primary DEM Secondary DEM Clutter 1 Clutter 2 Backdrop in	nagery Vector data				
Projection category Geographic	Digital elevation model				
	SRTM (World)				
Projection type Latitude - Longitude	D:\KRGM\SRTM JAWA\SRTM JAWA				
Use Units degrees	Setup				
Datum Ellipsoid WGS 84	File index				
C Ellipsoid Datum World Geodetic System 1984					
D P Region Parameters Global definition					
Ok Cancel Help					

Gambar 3.3.6 Konfigurasi SRTM

Gambar 3.3.7 menunjukan data file *index* SRTM yang dimasukan pada *software Pathloss* 5.0.

1	SRTM (World)										
File	s Edit Conver	t									
	file name	west edge °	east edge *	south edge *	north edge °	rows	columns	x cell "	y cell "		
1	S09E124.hgt	123.9995833	125.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
2	S09E123.hgt	122.9995833	124.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
3	S09E122.hgt	121.9995833	123.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
4	S09E121.hgt	120.9995833	122.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
5	S09E120.hgt	119.9995833	121.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
6	S09E119.hgt	118.9995833	120.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
7	S09E118.hgt	117.9995833	119.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
8	S09E117.hgt	116.9995833	118.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
9	S09E116.hgt	115.9995833	117.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
10	S09E115.hgt	114.9995833	116.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
11	S09E114.hgt	113.9995833	115.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
12	S09E113.hgt	112.9995833	114.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
13	S09E112.hgt	111.9995833	113.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
14	S09E111.hgt	110.9995833	112.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
15	S09E110.hgt	109.9995833	111.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
16	S08E125.hgt	124.9995833	126.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
17	S08E123.hgt	122.9995833	124.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
18	S08E122.hgt	121.9995833	123.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
19	S08E121.hgt	120.9995833	122.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
20	S08E120.hgt	119.9995833	121.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
21	S08E118.hgt	117.9995833	119.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
22	S08E117.hgt	116.9995833	118.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
23	S08E115.hgt	114.9995833	116.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
24	S08E114.hgt	113.9995833	115.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
25	S08E113.hgt	112.9995833	114.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
26	S08E112.hgt	111.9995833	113.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		

Gambar 3.3.7 *File Index* SRTM

Gambar 3.3.8 menunjukan pengisian data dari perancangan *site link microwave*, data yang di *input* yaitu nama *site*, *latitude*, *longitude*, *elevation*, dan *tower height*.

Site List										
	Site name	Latitude	Longitude	Call sign	Station code	Elevation (m)	Tower height (m)	Tower type	Site type	Site status
1	Bakalan Polokarto	07 37 56.36 S	110 52 25.91 E			100.7	30.0	unknown	not defined	not specified
2	Polokarto	07 37 38.84 S	110 53 28.83 E			113.8	55.0	unknown	not defined	not specified
3								unknown	not defined	not specified
4										
5										
6										
7										

Gambar 3.3.8 Site List

Toplogi jaringan pada gambar 3.3.9 menampilkan penghubungan antar dua *link* dan *site* menjadi satu lintasan.

Gambar 3.3.9 Topologi jaringan

Pengisian data informasi dari kontur tanah (*elevasi*) pada *terrain data* yang berisi kondisi dari lintasan yang menghubungkan kedua *site* berupa penghalang (*obstacle*) serta kondisi kontur tanah dari *site* Bakalan Polokarto dan *site Polokarto* dapat dilihat pada gambar 3.3.10 terdapat keterangan *elevation* yaitu ketinggian struktur tanah dan distance merupakan panjang *link* yang menghubungkan kedua *site*.

Gambar 3.3.10 Profil Lintasan Transmisi Site Bakalan Polokarto - Site Polokarto

Perhitungan ketinggian minimum antenna secara otomatis pada menu Antenna Heights ditunjukan pada gambar 3.3.11.

Gambar 3.3.11 Konfigurasi Ketinggian Antena

Pada gambar 3.3.12 menunjukan model antenna yang digunakan pada kedua *site* yaitu WTG0.6-212D dengan diameter 0.6 meter dengan *gain antenna* 40.40 dBi.

Antennas TR - TR X							
	Site Bakalan Polokarto	Site Polokarto					
Antenna model	WTG0.6-212D	WTG0.6-212D					
Antenna diameter (m)	0.18	0.18					
Antenna height (m)	25.50	25.50					
Antenna gain (dBi)	40.40	40.40					
Radome loss (dB)							
Antenna code	23g hp 0	23g hp 0					
Antenna 3 dB beamwidth H (°)	1.60	1.60					
Antenna 3 dB beamwidth E (°)	1.60	1.60					
True azimuth (°)	76.46	256.46					
Vertical angle (°)							
Antenna azimuth (°)							
Antenna downtilt (±°)							
Orientation loss (dB)							

Gambar 3.3.12 Konfigurasi Model Antena

Konfigurasi kabel *feeder* dilakukan pada bagian *Transmission lines*. Pada perancangan ini untuk *site* Bakalan Polokarto dan *site* Polokarto menggunakan kabel *feeder* yang sama, yang merupakan perangakat dari Andrew dengan spefikasi tipe TX *line model* EW220, Tx *line length* 25.50, dan *Connector Loss* 0.6. untuk *site* Bakalan polokarto dan 25.00 untuk *site* Polokarto, dan bekerja untuk frekuensi 23000 MHz. besarnya nilai *loss* akan nerpengaruh pada *Received Signal* yang dihasilkan.

Transmission lines TR - TR (25.5 - 25.5 m)							
 .* .* .* .*							
	Site Bakalan Polokarto	Site Polokarto					
TX line model	EW220	EW220					
TX line length (m)	25.50	25.50					
TX line unit loss (dB/100m)	27.95	27.95					
TX line loss (dB)	7.13	7.13					
Connector loss (dB)	0.60	0.60					

Gambar 3.3.13 Konfigurasi Transmission Line

Pada bagian *Antenna* oupling unit ini hanya mengkonfigurasi bagian Circulator brancing *loss* saja. Kedua *site* Bakalan dan Polokarto menggunakan brancing *loss* sebesar 1,7 dB. Besarnya brancing *loss* juga dapat memengaruhi *Received Signal* yang dihasilkan.

Antenna coupling unit TR - TR X						
🗸 🗙 🧭 🗠 🥅 🤶						
	Site Bakalan Poloarto	Site Polokarto				
Configuration						
Miscellaneous loss (dB)						
Circulator branching loss (dB)	1.70	1.70				
TX switch loss (dB)						
TX filter loss (dB)						
Other TX loss (dB)						
RX hybrid loss (dB)						
RX filter loss (dB)						
Other RX loss (dB)						

Gambar 3.3.14 Konfigurasi Antenna Coupling Perangkat microwave dengan jenis radio model RTN 600 23G_SP_128QAM_2 digunakan pada site Bakalan Polokarto dan site Polokarto. Untuk spesifikasi bisa dilihat pada gambar 2.3.15

Microwave X					
🗸 🗙 🖋 😋 📓 🖬 🛄 ?					
	Site Bakalan Poloarto	Site Polokarto			
Radio model	RTN 600 23G_SP_128QAM_2	RTN 600 23G_SP_128QAM_2			
Emission designator	28M0D7W	28M0D7W			
Radio code	23g 128qam 28m stm1	23g 128qam 28m stm1			
TX power (watts)	3.98E-002	3.98E-002			
TX power (dBm)	16.00	16.00			
RX threshold criteria	1E-12 BER	1E-12 BER			
RX threshold level (dBm)	-58.50	-58.50			
Residual BER					
Residual BER threshold (dBm)					
Maximum receive signal (dBm)					
Signature delay (ns)	6.30	6.30			
Signature width (MHz)	24.00	24.00			
Signature depth min phase (dB)	24.70	24.70			
Signature depth nonmin phase (dB)	21.70	21.70			
Bits per block	222	222			
Blocks per second	222	222			
Alpha1	222	222			
Alpha2	222	222			
Alpha3	222	222			

Gambar 3.3.15 Konfigurasi Microwave

Curah hujan di Indonesia dikategorikan pada golongan P yang termasukcurah hujan yang cukup besar sehingga dalam konfigurasi pada aplikasi *Pathloss* 5.0 menggunkan *file* ITU-R P. Nilai rata-rata curah hujan pada daerah *site* tersebut sebesar 97.94 mm/Jam. Berikut gambar 3.3.16 Konfigurasi curah hujan.

Rain - ITU-R P530	×
✓ X // œ ?	
Rain calculation	On
Path center latitude	07 37 47.60 S
Path center longitude	110 53 02.37 E
Frequency (MHz)	23000.00
Polarization	Vertical
Rain rate data source	ITU-R P.837-3 database
Rp 0.01% (mm/hr) - ITU837	97.94 🔳
Rp 0.01% (mm/hr) - file	145.00
Rain file	itu_p.rai 🔹
Rain region	ITU Region P
Rp 0.01% (mm/hr) - user	
Alpha	9.403E-002
Beta	1.043

Gambar 3.3.16 Konfigurasi Curah Hujan

Kemudian pada bagian *Path Profile*, frekuensi juga di atur menjadi 23000 MHz, polarisasi menggunakan polarisasi Vertikal, *C factor* bernilai 6.58, *Trrain roughness* 6.10m dan *Average annual temperature* 23.55°C.

[⊬] Path Profile Data (Vigants - Barnett)						
✓ X // C ?						
Frequency (MHz)	23000.00					
Polarization	Vertical					
Path length (km)	2.30					
Field margin (dB)						
Diffraction loss (dB)						
Fade occurrence factor (Po)	1.10E-003					
Path center latitude	07 37 47.60 S					
Path center longitude	110 53 02.37 E					
Climatic factor	2.00 🛋					
Terrain roughness (m)	6.10 🛋					
C factor	6.58 🛋					
Average annual temperature (°C)	23.55 🛋					

Gambar 3.3.17 Konfigurasi Path Profile

Setelah selesai melakukan konfigurasi, dapt dilihat parameter-parameter yang keluar pada tampilan menu *Transmission Analysis*. Berikut gambar 3.3.18 tampilan menu *transmission analysis*.

Gambar 3.3.18 Tampilan Menu Transmission Analysis