BAB III METODE PENELITIAN

3.1 Waktu Dan Tempat

Data yang saya digunakan untuk laporan program MBKM ini diambil dari saya mengikuti magang di PT.Poca Jaringan Solusi, terhitung mulai tanggal 15 Juli 2022. Data yang dikumpulkan untuk kebutuhan perancangan ini seperti *longitude*, *latitude*, survei lokasi, jenis antena dan radio. Data tersebut akan dimasukan kedalam *software* yaitu *Pathloss 5.0* dan *Google earth*. Untuk mengoperasikan *software* tersebut tentunya membutuhkan alat berupa sistem operasi pada perangkat keras yang digunakan agar proses perancangan dapat berjalan dengan optimal. Setelah sistem dirancang, selanjutnya dilakukan simulasi pada *software Pathloss 5.0* untuk mengetahui apakah sistem berjalan sesuai dengan parameter yang ditentukan atau tidak. Dari proses simulasi tersebut akan didapatkan hasil *report* berupa link budget yang berisi parameter-parameter dari proses perancangan jaringan transmisi *microwave*. Data tersebut di dapat dari hasil survey, RNP atau orang planning dengan bentuk data excel yang kemudian disimulasikan melalui *software Pathloss 5.0* untuk mengetahui desain antena dan frekuensi.

Gambar 3.1 Data Link Budget

3.2 Alat Dan Bahan

Perancangan jaringan transmisi *microwave* pada *site* Sidodadi Masaran dan *site* Tiga Pilar Masaran ini dibutuhkan perangkat keras dan perangkat lunak agar sistem perancangan dan hasil perancangan dapat optimal.

3.2.1 Perangkat Keras

1) Laptop dengan Processor Intel Core i7 vPro

2) Memory 8 GB

3.2.2 Perangkat Lunak

- 1) Sistem Operasi Windows 10 (64 bit)
- 2) Software Pathloss 5.0
- 3) *Google Earth*

Untuk komponen atau bahan yang digunakan dalam software terdapat beberapa yaitu antena dengan tipe VHPX6A – 142 dan VHLP2 – 15, *Transmission Line* dengan tipe EW132-144, dan *Microwave* dengan tipe *RTN* 600 15G-SP_4s_16E1.

3.3 Metode Dan Proses Kerja

Penulis menggunakan 1 link hop yaitu *site* Sidodadi Masaran dan *site* Tiga Pilar Masaran sebagai lokasi perancangan *link miocowave* dalam Tugas Akhir ini. Data dari kedua lokasi *site* dapat dilihat pada table 3.1 Data tersebut digunakan dalam perancangan *link microwave* pada *software pathloss* 5.0.

Site Name	Latitude	Longitude	Elevation	Tower
				Heights
Sidodadi	07 29 27.64 S	110 53 46.79 E	85,49 m	35 m
Masaran				
Tiga Pilar	07 30 08.60 S	110 57 11.20 E	157,74 m	35 m
Masaran				

Tabel 3. 1 Data Site Jaringan

Jarak dari *site* Sidodadi Masaran ke *site* Tiga Pilar Masaran yaitu 6.39 Km dengan kondisi geografis yang cenderung landai dengan selisih elevasi yang tidak terlalu signifikan. Kondisi tersebut menjadikan lokasi ini cocok untuk komunikasi data menggunakan gelombang mikro yaitu dengan *antenna microwave*. Pada gambar 3.3 terdapat *path profile* dari perancangan *link microwave* ini yang diambil dari peta *Google earth*. Dapat diketahui lingkungan sekitar dari kedua *site* terdapat pemukiman dan ladang warga dengan ketinggian yang tidak terlalu tinggi menjadikan *site* Sidodadi Masaran dan *site* Tiga Pilar Masaran *Line of Sight* (LOS).

Gambar 3. 2 Lokasi Perancangan Jaringan

Melakukan perancangan sebagai *near end*, site Sidodadi Masran memiliki latitude 07°29'27.64" S dan longitude 110°53'46.79" E yang terletak di Kecamatan Masaran, Kabupaten Sragen. Ketinggian tower di *site* Sidoadi Masaran yaitu 35 meter dari permukaan tanah. Lokasi dari *site* Sidodadi Masaran yang diambil dari peta *Google earth* dapat dilihat pada gambar 3.3.

Gambar 3. 3 Lokasi Site Sidodadi Masaran

Kemudian menggunakan lokasi *site* Tiga Pilar Masaran yang diambil dari peta *Google earth*. Terletak di kecamatan Masaran, Kabupaten Sragen *site* Sidodadi Masaran sebagai *far end* latitude 07°30' 08.60" S dan *longitude* 110°57'11.30" E yang. Ketinggian tower di *site* Tiga Pilar Masaran yaitu 35 meter.

Gambar 3. 4 Lokasi Site Tiga Pilar Masaran

3.4 Spesifikasi Perangkat

Perancangan *link microwave site* Sidodadi Masaran dan *site* Tiga Pilar Masaran menggunakan beberapa perangkat pendukung. Berikut tabel 3.2 perangkat perancangan *link microwave*.

No	Perangkat	Jenis	Keterangan
1	Antena	VHPX6A-142 dan	Diameter 0.83
		VHLP2 -15	meter dan 0.61,
			Gain 45.80 dBi dan
			36.80 dBi
2	Transmission Line	EW132-144	Eleptical
			Waveguide
3	Microwave	RTN 600 15G-SP_4s_16E1	Frequency Range
			14400.0 - 15358.0
			MHz

Tabel 3. 2 Perangkat Link Microwave

3.5 Perancangan Link Microwave

Dalam melakukan perancangan *link microwave* dari *site* Sidodadi Masaran ke *site* Tiga Pilar Masaran ini menggunakan *software Pathloss* 5.0. Tahapan perancangannya yaitu melakukan pengisian *file Shuttle Radar Topography Mission* (SRTM) yang 25 didalamnya berisi data peta dan kontur tanah pada suatu daerah. Peta SRTM berfungsi dalam memetakan dan mengetahui kontur tanah pada lokasi perancangan *link microwave*. Ditunjukan pada gambar 3.5 dan gambar 3.6.

Projection category	Geographic	 Digital elevation model
	•	SRTM (World)
Projection type	Latitude - Longitude	D:\KRGM\SRTM JAWA\SRTM JAWA
se Units	degrees	Setup
Datum Ellipsoid	WGS 84	File index
Ellipsoid Datum	World Geodetic System 1984	•
P Region ameters	Global definition	

Gambar 3. 5 Konfigurasi SRTM

Gambar 3.6 menunjukan data file index SRTM yang dimasukan pada aplikasi pathloss 5.0

R. File	SRTM (World) Edit Conver	t								×
	file name	west edge *	east edge "	south edge *	north edge *	rows	columns	x cell "	y cell *	
1	S07E105.hgt	104.9995833	106.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
2	S07E106 hgt	105 9995833	107.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
3	S07E107 hgt	106.9995833	108.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
4	S07E108.hgt	107.9995833	109.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
5	S07E109.hgt	108.9995833	110.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
6	S07E110.hgt	109.9995833	111.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
7	S07E111.hgt	110.9995833	112.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
8	S07E112 hgt	111.9995833	113 0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
9	S07E113.hgt	112.9995833	114.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
10	S07E114.hgt	113.9995833	115.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
11	S07E115.hgt	114.9995833	116.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
12	S07E116.hgt	115 9995833	117.0004167	-7.000416667	-5 999583333	1201	1201	3.0	3.0	
13	S07E118.hgt	117.9995833	119.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
14	S07E119.hgt	118.9995833	120.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
15	S07E120 hgt	119.9995833	121.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
16	S07E121 hgt	120.9995833	122.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
17	S07E122.hgt	121.9995833	123.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
18	S07E124.hgt	123.9995833	125.0004167	-7.000416667	-5.999583333	1201	1201	3.0	3.0	
19	S08E105 hgt	104.9995833	106.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
20	SOBE 106 hgt	105 9995833	107 0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
21	S08E107.hgt	106.9995833	108.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
22	S08E108.hgt	107.9995833	109.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
23	S08E 109 hgt	108 9995833	110.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
24	S08E110.hgt	109 9995833	111 0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
25	S08E111.hgt	110.9995833	112.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
26	S08E112.hgt	111.9995833	113.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
27	CODE 112 hat	112 0005922	111 0001107	9 000446667	6 000592222	1201	4204	2.6	2.0	

Gambar 3. 6 File Index SRTM

Gambar 3.7 menunjukan pengisian data dari *site* perancangan *link microwave*, data yang di input yaitu nama *site*, *latitude*, *longitude*, *elevation* dan *tower height*.

*	Site List											
Imp	ort Export Edit Marksites	Create Group The	matic mapping									
	Site name	Latitude	Longitude	Call sign	Station code	Elevation (m)	Tower height (m)	Tower type	Site type	Site status	Base station	Show local
1	TIGA PILAR MASARAN	07 30 08.60 S	110 57 11.20 E			157.7		unknown	not defined	not specified		
2	SIDODADI MASARAN	07 29 27.64 S	110 53 46.79 E			85.5		unknown	not defined	not specified		
3								unknown	not defined	not specified		
4												

Gambar 3. 7 Site List

Toplogi jaringan pada gambar 3.8 menunjukan pengenghubungan link kedua *site* menjadi satu lintasan.

Gambar 3. 8 Topologi Jaringan

Pengisian data informasi dari kontur tanah (elevasi) pada *terrain data* yang berisi kondisi dari lintasan yang menghubungkan kedua *site* berupa penghalang (*obstacle*) serta kondisi kontur tanah dari *site* Sidodadi Masaran dan *site* Tiga Pilar Masaran dapat dilihat pada gambar 3.9. Terdapat keterangan *elevation* yaitu ketinggian struktur tanah dan *distance* adalah Panjang link yang menghubungkan kedua *site*.

Gambar 3. 9 Profil Lintasan Transmisi *Site* Sidodadi Masaran – *Site* Tiga Pilar Masaran

Perhitungan ketinggian minimum antena secara otomatis pada menu *Antena Heights* ditunjukan pada gambar 3.10.

Gambar 3. 10 Konfigurasi Ketinggian Antena

Gambar 3.11 menunjukan konfigurasi pada *path profile* (profil lintasan). Frekuensi yang digunakan yaitu 15.000 MHz dengan jarak antar *site* 6.39 Km, untuk perhitungan nilai *terrain roughness* dilakukan secara otomatis pada aplikasi dengan hasil nilai 6,10 meter.

Path Profile Data (Vigants - Barnett)						
✓ X Ø œ ?						
Frequency (MHz)	. 15000.00					
Polarization	Vertical					
Path length (km)	6.39					
Field margin (dB)						
Diffraction loss (dB)	*					
Fade occurrence factor (Po)	7.74E-003					
Path center latitude	07 29 48.12 S					
Path center longitude	110 55 29.00 E					
Climatic factor	1.00 🛋					
Terrain roughness (m)	6.10 🛋					
C factor	3.29 🛋					
Average annual temperature (°C)	23.55 🛋					

Gambar 3. 11 Path Profile Data

Gambar 3.12 menunjukan model antena yang digunakan pada kedua *site* yaitu SR2 5-144 dengan diameter antena 0,76 meter dan *antenna gain* 38,20 dBi.

Antennas TR - TR X								
X X								
	SIDODADI MASARAN	TIGA PILAR MASARAN						
Antenna model	VHPX6A-142	VHLP2-15						
Antenna diameter (m)	1.83	0.61						
Antenna height (m)	35.00	35.00						
Antenna gain (dBi)	45.80	36.80						
Radome loss (dB)		•						
Antenna code	4201	7008						
Antenna 3 dB beamwidth H (°)	0.80	2.50						
Antenna 3 dB beamwidth E (°)	0.80	2.50						
True azimuth (°)	101.36	281.35						
Vertical angle (°)								
Antenna azimuth (°)								
Antenna downtilt (±°)								
Orientation loss (dB)								

Gambar 3. 12 Konfigurasi Model Antenna

Saluran transmisi (*Transmission Lines*) yang digunakan yaitu kabel model EW132-144. Berikut gambar 3.13 konfigurasi *transmission lines*.

Transmission lines TR - TR (35.0 - 35.0 m) X							
X & Q III ?							
	SIDODADI MASARAN	TIGA PILAR MASARAN					
TX line model	EW132-144	EW132-144					
TX line length (m)	35.00	35.00					
TX line unit loss (dB/100m)	15.62	15.62					
TX line loss (dB)	5.47	5.47					
Connector loss (dB)							

Gambar 3. 13 Konfigurasi Transmission Lines

Gambar 3.14 menunjukan pengisian nilai pada *Circulator branching loss* sebesar 0,5 dB.

Antenna coupling unit TR - TR 🛛 🗙						
🗸 🗙 🖌 😋 🥅 🤋						
	SIDODADI MASARAN	TIGA PILAR MASARAN				
Configuration						
Miscellaneous loss (dB)						
Circulator branching loss (dB)	3.60	3.60				
TX switch loss (dB)						
TX filter loss (dB)						
Other TX loss (dB)		•				
RX hybrid loss (dB)						
RX filter loss (dB)						
Other RX loss (dB)						
61.69 61.69						

Gambar 3. 14 Konfigurasi Antenna Coupling

Perangkat *microwave* dengan jenis radio model RTN 600 15G-SP_4s_16E1 digunakan pada site sidodadi masaran dan *microwave* jenis radio model RTN 600 15GB-SP_4s_16E1. Untuk spesifikasi lengkapnya terdapat pada gambar 3.15.

Microwave X								
🗸 🔀 🖉 🗠 📓 🛅 🧱 ?								
	SIDODADI MASARAN	TIGA PILAR MASARAN						
Radio model	RTN 600 15G-SP_4s_16E1 RTN 600 15G-SP_4s							
Emission designator	28M0D7W	28M0D7W						
Radio code	15sp qpsk 16e1	15sp qpsk 16e1						
TX power (watts)	0.28	0.28						
TX power (dBm)	24.50	24.50						
RX threshold criteria	1E-11 BER	1E-11 BER						
RX threshold level (dBm)	-70.50	-70.50						
Residual BER	1E-12 BER	1E-12 BER						
Residual BER threshold (dBm)	-75.00	-75.00						
Maximum receive signal (dBm)								
Signature delay (ns)	6.30	6.30						
Signature width (MHz)	25.20	25.20						
Signature depth min phase (dB)	40.00	40.00						
Signature depth nonmin phase (dB)	40.00	40.00						
Bits per block	222	222						
Blocks per second	222	222						
Alpha1	222	222						
Alpha2	222	222						
Alpha3	222	222						

Gambar 3. 15 Konfigurasi Microwave

Curah hujan di Indonesia dikategorikan pada golongan P yang termasuk curah hujan yang cukup besar sehingga dalam konfigurasi pada aplikasi *Pathloss* 5.0 menggunakan file ITU-R P. Nilai rata-rata curah hujan pada daerah *site* tersebut sebesar 97,66 mm/jam. DI bawah ini gambar 3.16 konfigurasi curah hujan.

Rain - ITU-R P530				
✓ X // .⇔ .?				
Rain calculation	On			
Path center latitude	07 29 48.12 S			
Path center longitude	110 55 29.00 E			
Frequency (MHz)	15000.00			
Polarization	Vertical			
Rain rate data source	ITU-R P.837-3 database			
Rp 0.01% (mm/hr) - ITU837	* 97.66 🛋			
Rp 0.01% (mm/hr) - file	145.00			
Rain file	itu_p.rai 🛋			
Rain region	ITU Region P 🛛			
Rp 0.01% (mm/hr) - user				
Alpha	3.350E-002			
Beta	1.128			

Gambar 3. 16 Konfigurasi Curah Hujan

Setelah selesai melakukan konfigurasi, dapat dilihat parameter-parameter yang keluar pada tampilan menu *Transmission Analysis*. Berikut gambar 3.17 tampilan menu *transmission anlysis*.

Gambar 3. 17 Tampilan Menu Transmission