BAB III METODE KERJA

3.1 WAKTU DAN TEMPAT

Untuk kegiatan pelaksanaan MBKM yaitu mulai dari 27 April Tahun 2022 sampai 27 September Tahun 2022 berada di daerah Sampangan kecamatan Gajahmungkur Kota Semarang.

3.2 ALAT DAN BAHAN

Untuk Alat dan Bahan pada penelitian kali ini yaitu :

- 1. Laptop
- 2. Software Pathloss 5.0
- 3. Data Site

3.3 METODE DAN PROSES KERJA

Pada penilitian ini, penulis melakukan perancangan *link microwave* pada site Delanggu dan Gatak 2. Diharapkan untuk rancangan ini penulis mengharapkan bisa digunakan untuk kebutuhan komunikasi gelombang radio serta mengembangkan teknologi didaerah tersebut.

Perancangan *link microwave* pada site Delanggu dan Gatak ini dilakukan dengan mengumpulkan data informasi tentang *site* pada lokasi tersebut seperti hal nya *longitude, latitude* dan jenis perangkat yang digunakan di lokasi tersebut. Yang di aplikasikan di *software pathloss* 5.0 dan dari proses tersebut akan dihasilkan sebuah data *report, link budget* yang berisi informasi parameter pada rancangan yang telah dirancang oleh penulis. Dari lokasi dapat dilihat data berupa *latitude, longitude, elevasi, tower height,* secara lengkap *site neme, latitude, longitude, elevasi, tower heights* Delanggu dan Gatak berada pada tabel 3.1.

Tabel 3.1 Data site jaringan.

Site Name	Latitude	Longitude	Elevasi	Tower Heights
Delanggu	07°36°36.08 S	110°41°10.62 E	158.9 m	50 m
Gatak 2	07°36°16.70 S	110°42°04.82 E	144.4 m	40 m

Jarak *site* Delanggu dan Gatak yaitu 1,76 Km, untuk tabel ada beberapa informasi dari *site* Delanggu dan gatak 2 dimana lokasi ini bisa dibilang cocok untuk membuat komunikasi dengan antenna *microwave*.

Untuk Perangkat yang akan digunakan untuk menunjang penilitian kali ini terdapat pada tabel 3.2 :

No.	Perangkat	Jenis	Keterangan		
1.	Antenna	UKY 210 73/SC15	Diameter 0.30 m		
2.	Transmission Line	EW220	Elliptical Waveguide		
3.	Microwave	ML23M 8E1.raf	Frequency 23.000 MHz		

Tabel 3.2 Detail Perangkat

Untuk proses kerja perancangan *site* ada beberapa langkah dengan menggunakan *software pathloss* 5.0 untuk tahap pertama yaitu memasukkan file SRTM pada kolom *Digital elevation model* kemudian pilih SRTM (*World*). Contoh tampilan setup SRTM pada Primary DEM terdapat pada gambar 3.1.

es					
ite coordinates	Primary DEM Secondary DEM Clutter 1 Clutter 2 Backdrop	imagery Vector data			
Projection cate	gory Geographic 💌	Digital elevation model			
Projection	type Latitude - Longitude	D:\Pathloss 5.0\SRTM JAWA\SRTM			
Use l	Jnits degrees	Setup			
Oatum Ellip	usoid WGS 84	File index			
C Ellipsoid Da	atum World Geodetic System 1984 🗨				
D P Region Global definition					
	1				

Gambar 3.1 Setup SRTM pada Primary DEM

Untuk menampilkan informasi file index SRTM yang sudah di *import* pada *pathloss* 5.0 terdapat pada gambar 3.2.

1	SRTM (World)									- 0
File	Edit Conve	rt								
	file name	west edge *	east edge °	south edge °	north edge °	rows	columns	x cell "	y cell "	
1	S09E124.hgt	123.9995833	125.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
2	S09E123.hgt	122.9995833	124.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
3	S09E122.hgt	121.9995833	123.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
4	S09E121.hgt	120.9995833	122.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
5	S09E120.hgt	119.9995833	121.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
6	S09E119.hgt	118.9995833	120.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
7	S09E118.hgt	117.9995833	119.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
8	S09E117.hgt	116.9995833	118.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
9	S09E116.hgt	115.9995833	117.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
10	S09E115.hgt	114.9995833	116.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
11	S09E114.hgt	113.9995833	115.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
12	S09E113.hgt	112.9995833	114.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
13	S09E112.hgt	111.9995833	113.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
14	S09E111.hgt	110.9995833	112.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
15	S09E110.hgt	109.9995833	111.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0	
16	S08E125.hgt	124.9995833	126.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
17	S08E123.hgt	122.9995833	124.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
18	S08E122.hgt	121.9995833	123.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
19	S08E121.hgt	120.9995833	122.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
20	S08E120.hgt	119.9995833	121.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
21	S08E118.hgt	117.9995833	119.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
22	S08E117.hgt	116.9995833	118.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
23	S08E115.hgt	114.9995833	116.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
24	S08E114.hgt	113.9995833	115.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
25	S08E113.hgt	112.9995833	114.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
26	S08E112.hgt	111.9995833	113.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0	
27	S08E111 hot	110 9995833	112 0004167	-8 000416667	-6 999583333	1201	1201	3.0	3.0	

Gambar 3.2 Tampilan file SRTM

Penulis memasukkan beberapa detail informasi *site* yang akan dirancang oleh penulis mulai dari nama *site, latitude, longitude, elevation* (m) dan *Tower height* (m) secara lengkap terdapat pada gambar 3.3.

	🖬 Site List — 🗖 🔿										
Imp	Import Export Edit Mark sites Create Group Thematic mapping										
	Site name	Latitude	Longitude	Call sign	Station code	Elevation (m)	Tower height (m)	Tower type	Site t		
1	Gatak 2)7 36 16.70 S	110 42 04.82			144.4	40.0	unknown	not def		
2	DELANGGU	17 36 36.08 S	110 41 10.62			158.9	50.0	unknown	not def		
3								unknown	not def		
4											
E											

Gambar 3.3 List Data *site*

Untuk pengisian *Distance, Elevation, Structure, Height* dan *Ground* pada *terrain data* pada *site* dan pada kolom *Structure* bisa kita isi mulai dari pilihan pepohonan atau bangunan seperti pada contoh gambar 3.4 :

E PL	50 Link - Terr	ain Data - d	elanggu dela	nggu-gatak	2.pl5									
iles D	Design Cor	ifigure Co	ordinates (Operations	Convert text file	Report	Help							
	Scale	Distance	Elevation		Structure			Height	Ground					
1	0.000	0.000	158.9	start rang	e - tree			8	Average	^				
2	0.100	0.050	158.9						Average					
3	0.200	0.100	158.3						Average					
4	0.300	0.150	158.0						Average					
5	0.400	0.200	157.9						Average					
6	0.500	0.250	157.0						Average					
7	0.600	0.300	155.8						Average					
8	0.700	0.350	155.1						Average					
9	0.800	0.400	154.7						Average					
10	0.900	0.450	154.6						Average	_				
11	1.000	0.500	154.5						Average					
12	1.100	0.550	154.4						Average	~				
65 - 60 - 55 - 45 - 40														
0		0.2	U.4	0.6	0.8		1.0		1.2		1.4		1.6	1.7
ELAN	GGU DELA	NGGU							1	5000)0 (cm)	km - m	\bigcirc	Gatak

Gambar 3.4 Tampilan Structure Transmisi site Delanggu dan Gatak 2

Ketinggian antenna penulis menentukan dengan otomatis pada pilihan *Antenna Heights*. Tampilan pada aplikasi Pathloss untuk menentukan ketinggian terdapat pada gambar 3.5 :

Gambar 3.5 Menentukan ketinggian antenna secara otomatis

Memilih antenna untuk *Site* Delanggu dan Gatak 2, penulis memilih model antenna UKY 210 73/SC15 dengan diameter 0,30 m, tampilan pada aplikasi seperti pada gambar 3.6 :

	Antennas TR - TR 🛛 🗙									
	X X X I X I X I X I X I X I X I X I									
1		DELANGGU DELANGGU	Gatak 2							
	Antenna model	UKY 210 73/SC15	UKY 210 73/SC15							
	Antenna diameter (m)	0.30	0.30							
1	Antenna height (m)	12.00	17.00							
1	Antenna gain (dBi)	36.20	36.20							
4	Radome loss (dB)									
)	Antenna code	ml2303hp	ml2303hp							
\$	Antenna 3 dB beamwidth H (°)	3.10	3.10							
\$	Antenna 3 dB beamwidth E (°)									
\$	True azimuth (°)	70.28	250.28							
1	Vertical angle (°)	0.17	-0.18							
J	Antenna azimuth (°)									
t d	Antenna downtilt (±°)									
1	Orientation loss (dB)	0.00	0.00							
	Antenna downtilt (±°) Orientation loss (dB)	0.00	0.00							

Gambar 3.6 Pemilihan Antenna pada Site Delanggu dan Gatak 2

Untuk konfigurasi kabel *Feeder* pada penelitian kali ini untuk *site* Delanggu dan Gatak 2 menggunakan kabel *Feeder* yang sama dengan informasi perangkat tipe TX *Line model* EW220, TX *line length* 25,50, Tx *line unit loss* (dB/100m) 27,95, TX *line loss* (dB) 7,13, *Connector loss* (dB) 0,60. Tampilan pada aplikasi untuk konfigurasi *Transmission Line* terdapat pada gambar 3.7 :

	Transmission lines TR - TR (12.0 - 17.0 m) 🗙 🗙								
1	🗸 🔀 🧭 🔟 🤶								
1		DELANGGU DELANGGU	Gatak 2						
1	TX line model	EW220	EW220						
Ì	TX line length (m)	25.50	25.50						
3	TX line unit loss (dB/100m)	27.95	27.95						
3	TX line loss (dB)	7.13	7.13						
3	Connector loss (dB)	0.60	0.60						

Gambar 3.7 Konfigurasi Transmission line untuk site Delanggu dan Gatak 2

Antenna *Coupling* hanya untuk mengkonfigurasi *Circulator brancing loss*. *Site* Delanggu dan Gatak 2 ini akan menggunakan *brancing loss* 1,7 dB. Tampilan pada aplikasi untuk konfigurasi *Antenna Coupling* seperti pada gambar 3.8.

. Antenna coupling unit TR - TR	Antenna coupling unit TR - TR 🛛 🗙 🗙						
🗸 🗙 🖋 🗠 🛅 🤶							
	DELANGGU DELANGGU	Gatak 2					
Configuration							
Miscellaneous loss (dB)							
Circulator branching loss (dB)	1.70	1.70					
TX switch loss (dB)							
TX filter loss (dB)							
Other TX loss (dB)							
RX hybrid loss (dB)							
RX filter loss (dB)							
Other RX loss (dB)							

Gambar 3.8 Konfigurasi Antenna Coupling.

Selanjutnya pada perangkat *microwave* penulis memilih perangkat dengan model yang sama yaitu model ML23M 8E1.raf. Pemilihan bagian *Microwave* secara lengkap bisa dilihat pada gambar 3.9.

Microwave ×								
🗸 🗙 🖋 🗢 🖻 🔳 🗿								
	DELANGGU DELANGGU	Gatak 2						
Radio model	ML23M_8E1.raf	ML23M_8E1.raf						
Emission designator	5M80D7W	5M80D7W						
Radio code	ml23m 8e1	ml23m 8e1						
TX power (watts)	6.31E-002	6.31E-002						
TX power (dBm)	18.00	18.00						
RX threshold criteria	1E-6 BER	1E-6 BER						
RX threshold level (dBm)	-83.00	-83.00						
Residual BER								
Residual BER threshold (dBm)								
Maximum receive signal (dBm)								
Signature delay (ns)	6.30	6.30						
Signature width (MHz)	7.50	7.50						
Signature depth min phase (dB)	27.00	27.00						
Signature depth nonmin phase (dB)	27.00	27.00						
Bits per block	222	222						
Blocks per second	222	222						
Alpha1	222	222						
Alpha2	222	222						
Alpha3	222	222						

Gambar 3.9 Pemilihan bagian Microwave.

Hujan di Indonesia dikategorikan golongan P dimana golongan P termasuk hujan yang cukup besar. Untuk nilai rata-rata hujan di sekitar daerah *site* yaitu 97,86 mm/jam. Tampilan pada aplikasi untuk konfigurasi pada hujan terdapat pada gambar 3.10.

Rain - ITU-R P530 X								
✓ X Ø @ ?								
Rain calculation	On							
Path center latitude	07 36 26.39 S							
Path center longitude	110 41 37.72 E							
Frequency (MHz)	23000.00							
Polarization	Vertical							
Rain rate data source	ITU-R P.837-3 database							
Rp 0.01% (mm/hr) - ITU837	97.86 🔳							
Rp 0.01% (mm/hr) - file	145.00							
Rain file	itu_p.rai 📄							
Rain region	ITU Region P 🛛 🛋							
Rp 0.01% (mm/hr) - user								
Alpha	9.403E-002							
Beta	1.043							
Rain file Rain region Rp 0.01% (mm/hr) - user Alpha Beta	itu_p.rai							

Gambar 3.10 Konfigurasi pada Rain/Hujan.

Kemudian konfigurasi pada *Path Profile* Data (*Vigants - Barnett*) pada bagian frekuensi diatur pada 23,000 (MHz), polarisasi *Vertical, Climatic factor* kita atur pada 2,00, *Terrain roughness* (m), dan *C factor* seperti pada gambar 3.11 untuk konfigurasi *path profile* data.

Path Profile Data (Vigants - Barnett)	×
✓ .× .∥.⇔.?	
Frequency (MHz)	23000.00
Polarization	Vertical
Path length (km)	1.76
Field margin (dB)	
Diffraction loss (dB)	0.00 🛋
Fade occurrence factor (Po)	4.99E-004
Path center latitude	07 36 26.39 S
Path center longitude	110 41 37.72 E
Climatic factor	2.00 🛋
Terrain roughness (m)	6.10 🛋
C factor	6.58 🛋
Average annual temperature (°C)	23.40 🛋
	Path Profile Data (Vigants - Barnett)

Gambar 3.11 Konfigurasi Path Profile Data.

Dan setelah mengkonfigurasi pada langkah diatas, pada tampilan *Transmission Analysis* akan terlihat parameter-parameter yang sudah di konfigurasi oleh penulis seperti terdapat pada gambar 3.12.

les Design Configure Operations Desi	ign link Report	Help		
-7.7			17.0 m eirp 44.8 dBm ———	+36.2
×1.7 ×1.7		60% F1		
10.0 534 129.6 TR		fsl 124.6 aal 0.3 dif 0.0		rx-5 fm 2
///////////////////////////////////////		///////////////////////////////////////		1177
EIRP (dBm)	44.77	44.77		1777
EIRP (dBm) Free space loss (dB)	44.77	44.77 24.62		
EIRP (dBm) Free space loss (dB) Atmospheric absorption loss (dB)	44.77	44.77 24.62 0.34		177
EIRP (dBm) Free space loss (dB) Atmospheric absorption loss (dB) Net path loss (dB)	44.77 1	44.77 24.62 0.34 71.41		
EIRP (dBm) Free space loss (dB) Atmospheric absorption loss (dB) Net path loss (dB) Receive signal (dBm)	44.77 1 71.41 -53.41	44.77 24.62 0.34 71.41 -53.41		
EIRP (dBm) Free space loss (dB) Atmospheric absorption loss (dB) Net path loss (dB) Receive signal (dBm) Thermal fade margin (dB)	44.77 1 71.41 -53.41 29.59	44.77 24.62 0.34 71.41 -53.41 29.59		
EIRP (dBm) Free space loss (dB) Atmospheric absorption loss (dB) Net path loss (dB) Receive signal (dBm) Thermal fade margin (dB) Worst month SES (%)	44.77 1 71.41 -53.41 29.59 0.00005	44.77 24.62 0.34 71.41 -53.41 29.69 0.00005		
EIRP (dBm) Free space loss (dB) Atmospheric absorption loss (dB) Net path loss (dB) Receive signal (dBm) Thermal fade margin (dB) Worst month SES (%) Worst month SES (sec)	44.77 1 71.41 -53.41 29.59 0.00005 1.44	44.77 24.62 0.34 71.41 -53.41 29.59 0.00005 1.44		
EIRP (dBm) Free space loss (dB) Atmospheric absorption loss (dB) Net path loss (dB) Receive signal (dBm) Thermal fade margin (dB) Worst month SES (%) Worst month SES (sec) Worst month multipath BBER (ratio)	44.77 1 1 71.41 -53.41 29.59 0.00005 1.44	44.77 0.34 71.41 -53.41 29.59 0.00005 1.44		
EIRP (dBm) Free space loss (dB) Atmospheric absorption loss (dB) Net path loss (dB) Receive signal (dBm) Thermal fade margin (dB) Worst month SES (%) Worst month SES (sec) Worst month BBER (ratio) Worst month multipath BSR (ratio)	44.77 1 1 -53.41 29.59 0.00005 1.44	44.77 24.62 0.34 71.41 -53.41 29.59 0.00005 1.44		

Gambar 3.12 Tampilan Transmission Analysis.

Untuk kegiatan magang di PT. POCA wilayah Jawa Tengah tepatnya di Semarang. Untuk kegiatan magang sehari-hari dari kita adalah lebih sering di

bagian dokumen. Karena dibagian dokumen karyawannya kurang banyak, maka anak magang dialihkan kebagian dokumen semua. Bagian dokumen sendiri meliputi mengerjakan atau mengisi web berdasarkan laporan foto dari tim lapangan yang sudah selesai mengerjakan pekerjaannya. Gunanya sendiri untuk me*report* pekerjaan yang sudah dikerjakan ke customer supaya dicek kembali melalui web tersebut. Selama kurang lebih hampir 4 bulan kami berkecimpung dibagian pengisian dokumen. Ada sesekali penyampaian materi secara teori dari pembimbing lapangan dan sharing sesion untuk memperbanyak ilmu. Untuk terjun ke lapangan, kami baru sekali datang ke site yang sedang dikerjakan. Berhubung project lapangan hanya ada di daerah Klaten dan Solo. Kami tidak sanggup untuk pulang pergi Semarang-Klaten setiap hari.