BAB III METODE PENELITIAN

3.1 ALUR PENELITIAN

Dalam penelitian ini, terdapat beberapa tahapan yang harus dilakukan dalam perancangan jaringan transmisi *microwave* pada *site* Kepil dan *site* Wonosobo. Penelitian Tugas Akhir ini digambarkan dalam diagram alur penelitian sebagai berikut.

Gambar 3.1 Flowchart Alur Penelitian

Berdasarkan Gambar 3.1 penelitian ini diawali dengan studi literatur yaitu mencari materi berupa jurnal ilmiah, buku dan internet dari website yang berhubungan dengan masalah yang dibahas. Kemudian mengumpulkan data yang dibutuhkan untuk melakukan perancangan link microwave. Data yang didapat berupa titik koordinat, frekuensi yang dipakai, ketinggian tower dan perancangan site Kepil dan site Wonosobo dari Huawei. Software yang digunakan yaitu Windows 10 (64 bit) sebagai sistem operasi pada perangkat keras yaitu Laptop, Pathloss 5.0 untuk melakukan perancangan jaringan transmisi microwave dan simulasinya, Google Earth untuk mengetahui kondisi geografis dari lokasi perancangan. Ditahap perancangan sistem akan dilakukan simulasi melalui Software Pathloss 5.0 untuk mengetahui kehandalannya. Dari perancangan sistem di software Pathloss 5.0 menghasilkan data link budget. Selanjutnya menganalisis link budget yang telah didapat setelah proses simulasi perancangan menggunakan software Pathloss 5.0 yang telah berhasil dan membandingkannya dengan link *budget* perancangan dari Huawei untuk menghasilkan kesimpulan dari perancangan yang telah dibuat.

3.2 STUDI LITERATUR

Studi literatur dilakukan penulis dengan mencari dan mengumpulkan materi dari sejumlah sumber seperti buku, jurnal ilmiah dan internet untuk melakukan proses Tugas Akhir ini.

3.3 PERANCANGAN SISTEM

Berdasarkan Gambar 3.2 Perancangan sistem perancangan jaringan transmisi *microwave* pada *site* Kepil dan *site* Wonosobo diawali dengan melakukan pengumpulan data. Data dikumpulkan untuk memenuhi kebutuhan perancangan seperti *longitude*, *latitude*, jenis antena dan radio. Selanjutnya data tersebut akan digunakan di *software* perancangan jaringan transmisi *microwave* yaitu *Pathloss* 5.0 dan *Google Earth*. Untuk menjalankan *software* tentunya membutuhkan alat berupa sistem operasi pada *hardware* yang digunakan agar proses perancangan dapat berjalan dengan sebaik mungkin. Kemudian. setelah sistem dirancang dilakukan simulasi pada *software Pathloss* 5.0 untuk mengetahui sistem berjalan

sesuai parameter yang ditentukan atau tidak. Dari proses simulasi tersebut akan didapatkan hasil *report* berupa *link budget* yang berisi parameter-parameter dari proses perancangan jaringan transmisi *microwave*.

Gambar 3.2 Flowchart Perancangan Link Microwave

3.4 ALAT YANG DIGUNAKAN

Perancangan jaringan transmisi *microwave* pada *site* Kepil dan *site* Wonosobo membutuhkan perangkat keras dan perangkat lunak agar sistem perancangan dan hasil perancangan dapat optimal.

- 1. Perangkat Keras
 - a. Laptop dengan Processor Intel(R) Celeron(R) N4000
 - b. Memori 4 GB
- 2. Perangkat Lunak
 - a. Sistem Operasi Windows 10 (64 bit)
 - b. Pathloss 5.0
 - c. Google Earth

3.5 LOKASI PERANCANGAN

Pada penelitian ini, penulis menggunakan 1 *link hop* yaitu *site* Kepil dan *site* Wonosobo sebagai lokasi perancangan *link microwave* dalam Tugas Akhir ini. Kedua data lokasi *site* dapat dilihat pada Tabel 3.1. Data ini digunakan untuk perancangan *link microwave* pada *software Pathloss* 5.0.

Tabel 3.1 Data Site Jaringan

Site Name	Latitude	Longitude	Elevation	Tower Heights
Kepil	07°31'39.72"S	110°00'09.79"E	533 m	40 m
Wonosobo	07°30'29.70"S	110°00'15.40"E	556 m	55 m

Jarak antara *site* Kepil dan *site* Wonosobo adalah 2,16 Km dengan kondisi geografis yang cenderung landau dengan selisih elevasinya tidak terlalu jauh. Kondisi itu menjadikan daerah ini cocok untuk komunikasi data menggunakan gelombang mikro yaitu antena *microwave*.

Pada Gambar 3.3 terdapat *path profile* dari perancangan *link microwave* yang diambil dari *software Google Earth*. Dapat diketahui lingkungan disekitar dua *site* tersebut terdapat pemukiman dan pepohonan yang tidak terlalu tinggi sehingga *site* Kepil dan *site* Wonosobo *Line of Sight* (LOS).

Gambar 3.3 Lokasi Perancangan Link Microwave

Site Kepil memiliki *latitude* 07°31'39.72"S dan *longitude* 110°00'09.79"E. Ketinggian *tower* di *site* Kepil adalah 40 meter dari permukaan tanah. Lokasi *site* Kepil yang diambil dari *Google Earth* dapat di lihat pada Gambar 3.4.

Gambar 3.4 Lokasi Site Kepil

Pada Gambar 3.5 merupakan lokasi *site* Wonosobo yang diambil dari *Google Earth. Site* Wonosobo memiliki *latitude* 07°30'29.70''S dan *longitude* 110°00'15.40''E. Ketinggian *tower site* Wonosobo yaitu 55 meter dari permukaan tanah.

Gambar 3.5 Lokasi Site Wonosobo

3.6 SPESIFIKASI PERANGKAT

Perancangan *link microwave site* Kepil dan *site* Wonosobo menggunakan beberapa alat pendukung. Pada Tabel 3.2 merupakan perangkat yang digunakan pada perancangan *link microwave*.

No	Perangkat	Jenis	Keterangan
1	Antenna	WTG0.6-212D	Diameter 0.6
			meter, Gain 40.40
			dBi
2	Transmission Line	EW220	Ellipcal
			waveguide
3	Microwave	RTN 600 23G_SP_128QAM_2	Frequency range
			21.200 - 23.618
			MHz

Tabel 3.2 Perangkat Link Microwave

3.7 PERANCANGAN LINK MICROWAVE

Dalam perancangan *link microwave* dari *site* Kepil ke *site* Wonosobo menggunakan *software Pathloss* 5.0. Untuk tahapan perancangan melakukan pengisian *file Shuttle Radar Topography Misson* (SRTM) yang berisi data peta dan kontur tanah pada suatu daerah. Fungsi dari peta *Shuttle Radar Topography Mission* (SRTM) yaitu memetakan dan mengetahui kontur tanah pada lokasi perancangan *link microwave*, dapat ditunjukan pada Gambar 3.6 dan Gambar 3.7.

💶 Configure	Geograph	ic System	×		
Files					
Site coordinate	es Prima	y DEM Secondary DEM Clutter 1 Clutter 2 Backdrop in	magery Vector data		
Projection category Geographic Digital elevation model					
			SRTM (World)		
Proje	ction type	Latitude - Longitude	D:\Pathloss 5.0\Pathloss 5.0\SRTM		
Use	Units	degrees	Setup		
Oatum	Ellipsoid	WGS 84	File index		
C Ellipsoid	Datum	World Geodetic System 1984			
DPF	D P Region Global definition				
Parameters					
		Ok Cancel Help			

Gambar 3.6 Konfigurasi SRTM

Pada Gambar 3.7 data file index SRTM yang dimasukan ke software Pathloss

5.0.

	SRTM (World)									- 0	×
File	Edit Conve	rt									
	file name	west edge °	east edge °	south edge °	north edge °	rows	columns	x cell "	y cell "		^
1	S09E123.hgt	122.9995833	124.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
2	S09E124.hgt	123.9995833	125.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
3	S09E116.hgt	115.9995833	117.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
4	S09E117.hgt	116.9995833	118.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
5	S09E118.hgt	117.9995833	119.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
6	S09E119.hgt	118.9995833	120.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
7	S09E120.hgt	119.9995833	121.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
8	S09E121.hgt	120.9995833	122.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
9	S09E122.hgt	121.9995833	123.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
10	S09E111.hgt	110.9995833	112.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
11	S09E112.hgt	111.9995833	113.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		_
12	S09E113.hgt	112.9995833	114.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
13	S09E114.hgt	113.9995833	115.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
14	S09E115.hgt	114.9995833	116.0004167	-9.000416667	-7.999583333	1201	1201	3.0	3.0		
15	S08E123.hgt	122.9995833	124.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
16	S08E113.hgt	112.9995833	114.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		_
17	S08E114.hgt	113.9995833	115.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
18	S08E115.hgt	114.9995833	116.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
19	S08E118.hgt	117.9995833	119.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		_
20	S08E121.hgt	120.9995833	122.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		
21	S08E122.hgt	121.9995833	123.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		_
22	S08E106.hgt	105.9995833	107.0004167	-8.000416667	-6.999583333	1201	1201	3.0	3.0		

Gambar 3.7 File Index SRTM

Pada Gambar 3.8 menunjukan pengisian data dari site perancangan link microwave, data yang di input adalah nama site, latitude, longitude, elevation dan tower height.

I	S	ite List												— c	x s
Γ	mport Export Edit Mark sites Create Group Thematic mapping														
		Site name	Latitude	Longitude	Call sign	Station code	Elevation (m)	Tower height (m)	Tower type	Site type	Site status	Base station	Show local study	Show area study	
Γ	1	Kepil	07 31 39.72 S	110 00 09.79			533.0	40.0	unknown	not defined	not specified				
Γ	2	Wonosobo	07 30 29.70 S	110 00 15.40			557.0	55.0	unknown	not defined	not specified				
Γ	3								unknown	not defined	not specified				
	4														

Gambar 3.8 Site List

Gambar 3.9 merupakan topologi jaringan yang menunjukan penghubungan *link* dua *site* menjadi satu lintasan.

Gambar 3.9 Topologi jaringan

Pengisian data informasi dari *elevasi* pada *terrain data* yang berisi kondisi dari lintasan yang menghubungkan dua *site* berupa *obstacle* serta kondisi kontur tanah dari *site* Kepil dan *site* Wonosobo dapat dilihat dari Gambar 3.10. Pada Gambar 3.10 terdapat keterangan *elevation* yaitu ketinggian struktur tanah dan *distance* adalah Panjang *link* yang menghubungkan *site* Kepil dan *site* Wonosobo.

Gambar 3.10 *Profile* Lintasan Transmisi *Site* Kepil – *Site* Wonosobo Perhitungan ketinggian minimum antenna secara *otomatis* pada *menu antenna height* ditunjukan pada Gambar 3.11.

Gambar 3.11 Konfigurasi Antenna Height

Perancangan *link microwave* ini menggunakan frekuensi 23.000 MHz dengan jarak antara *site* 2,16 Km. Untuk perhitungan nilai *terrain roughness* dilakukan secara *otomatis* pada *software Pathloss* 5.0 dengan hasil nilai 6,93 meter. Konfigurasi pada *path profile* ini ditunjukan pada Gambar 3.12.

Path Profile Data (Vigants - Barnett)	×
✓ X // Q ?	
Frequency (MHz)	23000.00
Polarization	Vertical
Path length (km)	2.16
Field margin (dB)	
Diffraction loss (dB)	-
Fade occurrence factor (Po)	7.73E-004
Path center latitude	07 31 04.71 S
Path center longitude	110 00 12.59 E
Climatic factor	2.00 🛋
Terrain roughness (m)	6.93 🛋
C factor	5.57 🛋
Average annual temperature (°C)	10.00 🛋

Gambar 3.12 Path Profile

Perancangan pada *Pathloss* 5.0 untuk model antena yang digunakan pada dua *site* yaitu WTG0.6-212D dengan diameter antena 0,6 meter dan antena *gain* 40,40 dBi. Pada Gambar 3.13 menunjukan model antena.

Antennas ny - ny	Ant	tenn	as T	R -	TR
------------------	-----	------	------	-----	----

🗸 🔀 🧭 🖻 🛅 🧱 ?					
	Kepil	Wonosobo			
Antenna model	WTG0.6-212D	WTG0.6-212D			
Antenna diameter (m)	0.60	0.60			
Antenna height (m)	40.00	55.00			
Antenna gain (dBi)	40.40	40.40			
Radome loss (dB)					
Antenna code	23g hp 0	23g hp 0			
Antenna 3 dB beamwidth H (°)	1.60	1.60			
Antenna 3 dB beamwidth E (°)	1.60	1.60			
True azimuth (°)	4.57	184.57			
Vertical angle (°)					
Antenna azimuth (°)					
Antenna downtilt (±°)					
Orientation loss (dB)					

×

Gambar 3.13 Konfigurasi Model Antena

Gambar 3.14 menunjukan Transmission line yang digunakan kabel model EW220. Untuk Connector Loss yang digunakan sebesar 0,6 dB.

Transmission lines TR - TR (40.0 - 55.0 m) X					
🗸 🔀 🧭 🖳 🧝					
Kepil Wonosobo					
TX line model	EW220	EW220			
TX line length (m)	40.00	55.00			
TX line unit loss (dB/100m)	27.95	27.95			
TX line loss (dB)	11.18	15.37			
Connector loss (dB)	0.60	0.60			

Gambar 3.14 Konfigurasi Transmission Line

Pada Antenna Coupling, pengisian nilai dari Circulator Branching Loss sebesar 1,70 dB yang ditunjukan pada Gambar 3.15.

Antenna coupling unit TR - TR		×
🗸 🔀 🧭 🗠 🎹 🤶		
	Kepil	Wonosobo
Configuration		
Miscellaneous loss (dB)		
Circulator branching loss (dB)	1.70	1.70
TX switch loss (dB)		
TX filter loss (dB)		
Other TX loss (dB)		
RX hybrid loss (dB)		
RX filter loss (dB)		
Other RX loss (dB)		

Gambar 3.15 Konfigurasi Antenna Coupling

Gambar 3.16 menunjukan perangkat *microwave* yang digunakan pada *site* Kepil dan *site* Wonosobo dengan jenis radio model RTN 600 23G_SP_128QAM dan spesifikasi lengkapnya terdapat pada gambar dibawah ini.

Microwave	Microwave >					
🗸 🗙 🖌 🗢 🖻 🖬 🕅 ?	/ 🗙 🧳 🗢 📓 🔳 🛄 ?					
	Kepil	Wonosobo				
Radio model	RTN 600 23G_SP_128QAM_2	RTN 600 23G_SP_128QAM_2				
Emission designator	28M0D7W	28M0D7W				
Radio code	23g 128qam 28m stm1	23g 128qam 28m stm1				
TX power (watts)	3.98E-002	3.98E-002				
TX power (dBm)	16.00	16.00				
RX threshold criteria	1E-6 BER	1E-6 BER				
RX threshold level (dBm)	-67.00	-67.00				
Residual BER	1E-12 BER	1E-12 BER				
Residual BER threshold (dBm)	-74.50	-74.50				
Maximum receive signal (dBm)	-20.00	-20.00				
Signature delay (ns)	6.30	6.30				
Signature width (MHz)	24.00	24.00				
Signature depth min phase (dB)	26.00	26.00				
Signature depth nonmin phase (dB)	23.00	23.00				
Bits per block	222	222				
Blocks per second	222	222				
Alpha1	222	222				
Alpha2	222	222				
Alpha3	222	222				

Gambar 3.16 Konfigurasi Microwave

Gambar 3.17 menunjukan konfigurasi curah hujan, di Indonesia curah hujan dikategorikan pada golongan P termasuk curah hujan yang cukup besar sehingga dalam konfigurasi pada *Pathloss* 5.0 menggunakan *file* ITU-R P. Curah hujan pada daerah *site* memiliki nilai rata-rata sebesar 97,65 mm/jam.

Rain - ITU-R P530	×
🗸 🗙 🥒 🗠 🤶	
Rain calculation	On
Path center latitude	07 31 04.71 S
Path center longitude	110 00 12.59 E
Frequency (MHz)	23000.00
Polarization	Vertical
Rain rate data source	ITU-R P.837-3 database
Rp 0.01% (mm/hr) - ITU837	97.65 💌
Rp 0.01% (mm/hr) - file	145.00
Rain file	itu_p.rai 💌
Rain region	ITU Region P 🛛 🔳
Rp 0.01% (mm/hr) - user	
Alpha	0.128
Beta	0.963

Gambar 3.17 Konfigurasi Curah Hujan

Setelah selesai melakukan konfigurasi, dapat melihat parameter-parameter yang dikeluarkan pada tampilan *menu Transmission Analysis*. Gambar 3.18 menenjukan beberapa parameter yang keluar setelah konfigurasi.

SE PL50 Link Standalone - Transmission Anal Files Design Configure Operations De	ysis - kepil-wonosol esian link Report	bo.pl5 Help	- σ	×
			55.0 m eip 38.7.48m	-16.0
tx 1.7 rx 1.7 tx 160			00% F1	tx -1.7 rx -1.7 tx 16.0
R 61.1 fm 5.9 TR	1			rx -61.1 fm 5.9 TR
EIRP (dBm)	42.92	38.73		^
Free space loss (dB)	126.36			
Atmospheric absorption loss (dB)	0.41			
Net path loss (dB)	77.13	77.13		
Receive signal (dBm)	-61.13	-61.13		
Thermal fade margin (dB)	5.87	5.87		
Worst month SES (%)	0.02000	0.02000		
Worst month SES (sec)	COC C7	505.57		
	525.57	525.57		
Worst month multipath BBER (ratio)	1.02E-005	525.57 1.02E-005		
Worst month multipath BBER (ratio) Worst month multipath ESR (ratio)	1.02E-005 3.93E-004	1.02E-005 3.93E-004		
Worst month multipath BBER (ratio) Worst month multipath ESR (ratio) Polarization	1.02E-005 3.93E-004 Vertica	525.57 1.02E-005 3.93E-004 al		
Worst month multipath BBER (ratio) Worst month multipath ESR (ratio) Polarization 0.01% rain rate (mm/hr)	525.57 1.02E-005 3.93E-004 Vertica	525.57 1.02E-005 3.93E-004 al 97.65		
Worst month multipath BBER (ratio) Worst month multipath ESR (ratio) Polarization 0.01% rain rate (mm/hr) Flat fade margin - rain (dB)	525.57 1.02E-005 3.93E-004 Vertica 5.87	525.57 1.02E-005 3.93E-004 al 97.65 5.87		
Worst month multipath BBER (ratio) Worst month multipath ESR (ratio) Polarization 0.01% rain rate (mm/hr) Filat fade margin - rain (dB) Rain attenuation (dB)	525.57 1.02E-005 3.93E-004 Vertica 5.87 5.87	525.57 1.02E-005 3.93E-004 al 97.65 5.87 5.87		
Worst month multipath BBER (ratio) Worst month multipath ESR (ratio) Polarization 0.01% rain rate (mm/hr) Flat fade margin - rain (dB) Rain attenuation (dB) Worst month rain BBER (ratio)	525.57 1.02E-005 3.93E-004 Vertica 5.87 5.87 1.87E-004	525.57 1.02E-005 3.93E-004 al 97.65 5.87 5.87 1.87E-004		
Worst month multipath BBER (ratio) Worst month multipath ESR (ratio) Polarization 0.01% rain rate (mm/hr) Filat fade margin - rain (dB) Rain attenuation (dB) Worst month rain BBER (ratio) Worst month rain ESR (ratio)	525.57 1.02E-005 3.93E-004 Vertica 5.87 5.87 1.87E-004 7.93E-003	525.57 1.02E-005 3.93E-004 al 97.65 5.87 5.87 5.87 1.87E-004 7.93E-003		
Worst month multipath BBER (ratio) Worst month multipath ESR (ratio) Polarization 0.01% rain rate (mm/hr) Flat fade margin - rain (dB) Rain attenuation (dB) Worst month rain BBER (ratio) Worst month rain BSR (ratio)	525.57 1.02E-005 3.93E-004 Vertica 5.87 5.87 1.87E-004 7.93E-003 1.97E-004	525.57 1.02E-005 3.93E-004 al 97.65 5.87 5.87 1.87E-004 7.93E-003 1.97E-004		
Worst month multipath BERE (ratio) Worst month multipath ESR (ratio) Polarization 0.01% rain rate (mm/hd) Fill fade margin - rain (dm/hd) Rain attenuation (dB) Worst month rain ESR (ratio) Worst month rain ESR (ratio) Worst month total ESR (ratio)	525.57 1.02E-005 3.93E-004 Vertica 5.87 5.87 1.87E-004 7.93E-003 1.97E-004 8.33E-003	525.57 1.02E-005 3.93E-004 al 97.65 5.87 5.87 1.87E-004 7.93E-003 1.97E-004 8.33E-003		

Gambar 3.18 Tampilan Menu Transmission Analysis