DAFTAR PUSTAKA

[1] K. Ni'amah, S. Nurjanah and a. A. R. Danisya, "Model Kanal 5G Frekuensi 28 GHz dengan Pengaruh Suhu di Kota Yogyakarta," ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron, vol. 8, no. 2, p. 276, 2020.
[2] Kominfo, "Menkominfo Tegaskan Frekuensi 5G di Indonesia Tak Ganggu Penerbangan," Kementrian Kominfo, 19th January 2022. [Online]. Available: kominfo.go.id. [Accessed 2nd June 2022].
[3] N. I. Pratiwi, A. A. Muayyadi and U. K. Usman, "Perbandingan Performansi Polar Code dan Repetition Code terhadap Kanal Multipath pada Sistem Komunikasi 5G," Journal of Electrical Engineering, Computer and Information Technology, 2020.
[4] M. Alfaroby, K. Anwar and N. M. Ardiansyah, "5G Channel Model Indonesia Menggunakan Teknik Statistical Spatial Channel Model (SSCM)," eProceeding of Engineering, vol. 5, no. 1, pp. 107-115, 2018.
[5] B. Alfaresi, Z. Nawawi, R. F. Malik and K. Anwar, "5G Channel Model for 28 GHz frequency in Palembang," Journal of Physics: Conference Series, pp. 6-7, 2020.
[6] O. R. Ludwiniananda, K. Anwar and B. Syihabuddin, "Investigating Bhattacharyya Parameters for Short and Long Polar Codes in AWGN and Rayleigh Fading Channels," 2019.
[7] S. Ju, O. Kanhere, Y. Xing and T. S. Rappaport, "A Millimeter-Wave Channel Simulator NYUSIM with Spatial Consistency and Human Blockage," IEEE Glob. Commun. Conf. GLOBECOM 2019 - Proc, pp. 1-6, 2019.
[8] ITU-R, "IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond," Itu-R M.2083-0, vol. 0, 2015.
[9] R. D. Wahyuningrum, K. Anwar and L. O. Nur, "Humidity Effect to The Indonesia 5G Channel Model," The Center for Advanced Wireless Technologies (AdWiTech), 2020.
[10] GSMA, Road to 5G: Introduction and Migration, London: GSMA, 2018.
[11] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge: Cambridge University Press, 2012.
[12] C. E. Shannon, "A Mathematical Theory of Communication," The Bell System Technical Journal, vol. 27, no. 3, pp. 379-432, 1948.
[13] C. Schlegel and L. Perez, Trellis and Turbo Coding, John Wiley \& Sons, 2003.
[14] A. F. Molisch, Wireless Communications, 2nd ed, IEEE, 2011.
[15] C. Wang, J. Bian, J. Sun, W. Zhang and M. Zhang, "A Survey of 5G Channel Measurements and Models," IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 3142-3168, 2018.
[16] R. D. Wahyuningrum, D. Pramudya and I. Permatasari, "5G Channel Model Under the Effect of Human Blockage at 3.5 GHz Frequency," Journal of Computing Engineering, System and Science, 2021.
[17] D. W. Astuti, "Analisa Simulasi Performansi Penggunaan Orthogonal Frequency Division Multiplexing Pada Sistem Digital Video BroadcastingTerrestrial," IncomTech, Jurnal Telekomunikasi dan Komputer, vol. 3, no. 1, pp. 65-83, 2017.
[18] P. Guan, "5G Field Trials: OFDM-based Waveforms and Mixed Numerologies," EEE Journal On Selected Areas In Communications, vol. 35, no. 6, pp. 1234-1243, 2017.
[19] 3GPP, "Technical Specification Group Radio Access Network," document, vol. 1047, December 2017.
[20] J. Yli-Kaakinen, A. Loulou, T. Levanen, K. Pajukoski, A. Palin, M. Renfors, I. a. M. V. Life Fellow and I. Senior Member, "Frequency-Domain Signal Processing for Spectrally-Enhanced CP-OFDM Waveforms in 5G New Radio," IEEE Transaction On Wireless Communications, vol. 20, no. 10, October 2021.
[21] E. Sasoglu, Polarization and Polar Codes, vol. 8, San Diego, California: now Publishers Inc., 2012.
[22] K. Anwar, E. Christy and R. P. Astuti, "Indonesia 5G Channel Model Under Foliage Effect," Buletin Pos dan Telekomunikasi, vol. 17, no. 2, pp. 75-94, 2019.
[23] I. Purnomo, A. Muayyadi and D. Saputri, "Numerology Effect on 5G 28 GHz Communication System Performance," Proc. - 2020 Int. Semin. Intell. Technol. Its Appl. Humanification Reliab. Intell. Syst. ISITIA 2020, pp. 332337, 2020.

