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A B S T R A C T

Diabetes is one of the deadliest and costliest diseases. Today, automatic diabetes detection systems are primarily
developed using deep learning (DL) approaches, which give high accuracy in classifying patients into two
classes: have diabetes or not. Unfortunately, DL is a high-complexity and unexplainable black-box model. This
paper proposes a new nearest neighbor-based framework to tackle those issues in classifying two diabetes
datasets: binary-class Pima India Diabetes Dataset (PIDD) and multiclass Diabetes Type. A 𝑘-means clustering
(KMC) is first carried out to remove the noises or outliers and keep the competent data in the training set. The
dimension of the competent data is then reduced using an autoencoder (AE) to minimize the distances of the
intra-class data but maximize that of the inter-class. A 𝑘-nearest neighbor (KNN) classifier and two variants:
pseudo nearest neighbor rule (PNNR) and local mean-based pseudo nearest neighbor (LMPNN), are used to
detect diabetes. In addition, a new variant named multi-voter multi-commission nearest neighbor (MVMCNN)
is introduced. An investigation based on 5-fold cross-validation (FCV) informs that, for binary-class PIDD,
the proposed combination of KMC, AE, and MVMCNN achieves the highest accuracy of 99.13%, which is
slightly higher than the state-of-the-art DL-based detection model that produces 98.07%. An evaluation based
on 10-FCV also indicates that, for the multiclass Diabetes Type, it obtains a higher accuracy of 95.24% than
the DL-based model for predicting diabetes that gives 94.02%.
1. Introduction

Diabetes, a disease that happens when the blood glucose level is
high, can be grouped into three types, namely type 1, type 2, and
gestational (Federation, 2021). In the first type, the pancreas produces
few (even no) insulin. The second type occurs if the pancreas pro-
duces insufficient insulin or the body is unable to utilize the insulin
adequately. In gestational diabetes, high blood sugar happens during
pregnancy, associated with both mother and child complications. Based
on the International Diabetes Federation (Federation, 2021), 20 out of
125 million live births have hyperglycemia in pregnancy, and 84% of
them are caused by gestational diabetes.

Diabetes may cause several complications, such as cardiovascular
diseases (Monnier et al., 2021), blindness, stroke, amputation or kidney
failure (Yang et al., 2020), early microvascular disease, and premature
ovarian aging (Yi et al., 2021). These facts make diabetes a costly
disease, where most costs come from the treatment and management of
the complication. As described in Yi et al. (2021), the cost estimates are
$24,013, $45,549, $25,431, $8907, $31,202, and $25,008 for stroke,
myocardial infarction (MI), lower extremity amputation (LEA), angina,
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congestive heart failure (CHF), and amputation, respectively. Hence,
automatic early detection of diabetes is crucial to help doctors give
proper actions to handle the disease.

Recent diabetes detection systems are commonly developed using
the DL-based approach. Some researchers report that DL can give a
high accuracy of more than 98%, which outperforms many ML-based
models, such as logistic regression (LR), decision tree (DT), support
vector machine (SVM) (Islam Ayon & Milon Islam, 2019; Naz & Ahuja,
2020; Zhou et al., 2020), and artificial neural network (ANN) (Chaves
& Marques, 2021). Nevertheless, DL is a high-complexity, black-box
model that can be unfavorable in medical. In the training process
using hundreds, thousands (or even millions) of data samples, it has to
optimize millions of parameters, needing high computational resources
and time (Bai et al., 2021). Besides, the black-box nature of the DL
is still unresolved (Tjoa & Guan, 2020), making its decision is poorly
understood by the domain experts in precision medicine. The main
problem is that the softmax probabilities in DL cannot be used as an
estimator of confidence (Gal, 2016). Therefore, today some researchers
focus on developing new concepts and metrics to make the DL more
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understandable (Bai et al., 2021; Barredo et al., 2020). One of them is
deep 𝑘-nearest neighbors (Papernot & Mcdaniel, 2018), which leverages
a KNN to provide confidence and credibility in DL decisions. As we
know, KNN has an explainability by conforming the distance of a test
data (query) to the training data.

In this research, a new framework of diabetes detection is proposed
by leveraging three schemes: clustering, dimensional reductions, and
nearest neighbor-based classifiers. In the first stage, a KMC is used to
remove the noisy data in both diabetes classes of the training set so that
all the data are more competent to make a decision accurately. Next, an
AE is applied in the second stage to reduce their dimension to provide
better distributions. Finally, a KNN-based classifier and two variants:
PNNR and LMPNN, are exploited to detect diabetes. In addition, a new
variant named MVMCNN is introduced. A 5-FCV scheme is used to
evaluate the proposed framework. A further investigation is performed
by comparing the proposed model with the DL-based diabetes detection
described in Naz and Ahuja (2020) and Zhou et al. (2020).

2. Related works

A few papers published in 2018 to 2020 discuss the rule-based
approach in predicting diabetes, especially computer science. A paper
by Mehra et al. (2020) is one of them. It follows the approach by
generating IF-THEN rules from linguistic summarization for diabetes
prediction. The paper checks four measurements; degree of truth, cov-
erage, reliability, and outliers. The reliability measurement was found
to be most beneficial for prediction. It stated that the approach has
promising results. The research clearly stated accuracy in a number
using a rule-based approach in predicting the disease found in Hayashi
and Yukita (2016). They run a classification using an algorithm called
Re-RX (Recursive-Rule eXtraction). The algorithm is claimed to give
high accuracy. It utilizes J48graft for the sampling process to reduce
its complexity. The sampling Re-RX with J48graft obtains fewer rules
and produces a mean accuracy of 83.83%.

Meanwhile, the machine learning (ML) approaches are dominating
the discussion of diabetes prediction. DT, NB, SVM, LR, and random
forest (RF) are the five most well-known predictive ML techniques used
for comparing accuracy in diabetes prediction. The accuracy varies
from 76% to 78%. Based on a comparative study in Battineni et al.
(2019), Jakka and Vakula Rani (2019), Kavitha and Subbaiah (2019)
and Sisodia and Sisodia (2018), DT, NB, and LR take turns as the best
predictor. In Kavitha and Subbaiah (2019), the authors predict diabetes
at an early stage by implementing LR, NB, and DT with the accuracy
of 75.3%, 76.6%, and 77.9%, respectively. In Sisodia and Sisodia
(2018), DT, SVM, and NB are used in their investigation on diabetes
detection, also in the early stage. Experiment on a 10-FCV shows that
NB (with a prediction rate of 76.3%) outperforms the rest. In Battineni
et al. (2019), LR is stated as the best predictor of diabetes by gaining
accuracy of 77% and 77.6%, respectively. It outperforms NB, J48, and
RF using 5, 10, 15, and 20-FCV. In Jakka and Vakula Rani (2019), using
the data preprocessing to remove the duplicate and missing values from
the dataset, the LR also gives higher accuracy than KNN, DT, NB, SVM,
and RF.

In Zhu et al. (2019), LR is improved by enhancing the clustering
process, which holds an essential role in LR. KMC is a commonly used
method for clustering due to its simplicity. Nevertheless, the initial
positions of the cluster centers (centroids) are sensitive and challenging
to define. The authors state that utilizing principal component analysis
(PCA) for KMC increases the LR accuracy with 1.98% higher accuracy
than other methods.

RF is also commonly used in predicting diabetes. Based on the
previously stated papers, its accuracy is not as high as DT or LR. Nev-
ertheless, with some modifications, the algorithm can perform better
than the conventional one with an accuracy above 78%. RF suffers from
processing time since the algorithm builds many DTs and uses many
2

data. Parallel computing is applied on RF to reduce its computational
time (Azizah et al., 2019). In 2020, Raghavendra and Santosh applied
RF with the feature selection method by leveraging entropy evaluation-
based (Raghavendra & Santosh Kumar, 2020) forward selection and
backward elimination. They claimed RF achieves an accuracy of 84.1%
by applying those methods. Outliers and missing values are also two
problems leading to lower accuracy. In Maniruzzaman et al. (2018), a
simple model is proposed to change those outliers and missing values
with the computed median to improve accuracy. It states that the
replacement makes RF produce a higher accuracy, up to 92.26%.

Many researchers also prefer SVM as one of the well-known methods
to diagnose diabetes. Many papers combine SVM with other methods
to achieve better prediction accuracy. In Lukmanto et al. (2019), SVM
is utilized for training a dataset generating the fuzzy rules. It uses
feature selection to retrieve essential features in a dataset; afterward,
SVM trains the dataset to generate rules; finally, a fuzzy-based model
is used to classify. The authors state that applying those methods
retrieves an accuracy of 89.02%. Another combination using SVM is
also found in Howsalya Devi et al. (2020) that utilizes a farthest
first (FF) algorithm to cluster the dataset to be several subsets. The
output of FF subsequently becomes the input of the SVM classifier.
A sequential minimal optimization (SMO) is used to help the SVM
in the training process solve quadratic programming problems, which
commonly appear during the process. The proposed integration obtains
a high accuracy of 99.4% in classifying which patient suffered diabetes
and which one is not.

Aside from those five most frequently discussed methods above,
some researchers also include KNN compared to their proposed meth-
ods. KNN is categorized as a lazy prediction method to group datasets
by their similarity. In Alehegn et al. (2019), the researchers propose
an ensemble approach to analyze and predict people with diabetes.
The proposed approach combines KNN, RF, NB, and J48 to reach
93.62% of accuracy. Most papers discussing KNN in diabetes prediction
compare the method with other well-known ML methods. Some recent
articles (Jakka & Vakula Rani, 2019; Kaur & Kumari, 2019; Rajni &
Amandeep, 2019; Tripathi & Kumar, 2020) compare KNN with other
well-known methods: DT, NB, LR, SVM, and RF. However, based on
those papers, KNN never comes first in the accuracy comparison.

DL is the latest advanced model compared to the rule-based and
conventional ML ones. Many researchers are also proposing this method
to diagnose diabetes mellitus. DL method is used in Naz and Ahuja
(2020) to detect diabetes in the early phase, to help doctors give
appropriate action or advice to stop the disease from further progress.
The paper compares DL with ANN, NB, and DT. It states that DL
outperforms all three models by a much higher accuracy, up to 98.07%,
for PIDD.

Other research using DL to predict diabetes is found in Islam Ayon
and Milon Islam (2019). The research uses a deep neural network
(DNN) based on 5-FCV and 10-FCV. The 5-FCV obtains a better result
than the 10-FCV by 1.24%. DL with attributes trained in 5-FCV gets an
accuracy of 98.35%, while the 10-FCV reaches 97.11%.

A recent paper by Huaping Zhou in Zhou et al. (2020) proposes a
DL-based model for predicting diabetes (DLPD) for not only diabetes
prediction but also diabetes type prediction. DLPD combines the use
of hidden layers of DNN and dropout regularization. The latter is
utilized to intercept over-fitting. To achieve high accuracy, DLPD tunes
several parameters and exploits a loss function of binary cross-entropy.
It reaches high accuracy of 99.41% for detecting diabetes in a patient
(yes or no) and 94.02% for classifying the diabetes types (1 or 2) using
a testing set of 15% out of the PIDD. This result of DLPD is better than
the two previous models in Islam Ayon and Milon Islam (2019) and
Naz and Ahuja (2020).

Unfortunately, DL needs a high-computational resource and a long
learning process. It should optimize millions of parameters for training
thousands of data samples (Bai et al., 2021) and even more if a data
augmentation is necessarily needed. Besides, DL is a black-box model

(that is not explainable) since the softmax probabilities in DL is not
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a reliable estimator of confidence (Gal, 2016). Hence, today some
experts focus on developing new concepts and metrics to make the
DL more understandable (Bai et al., 2021) by incorporating white-box
conventional machine learning models, such as DT, fuzzy rule-based
learning, and KNN (Barredo et al., 2020). For instance, a deep 𝑘-nearest
neighbors (Papernot & Mcdaniel, 2018) is a combined DL and KNN.
KNN can conform the distance (dissimilarity) of the given test data
(query) to the training data. Thus, incorporating KNN into DL provides
both confidence and credibility metrics in the DL decision, making DL
more explainable.

Therefore, in this research, a new lower-computational framework
using nearest neighbor-based classifiers is proposed to handle those
issues: expensive computation, time-consuming, and unexplainable. Be-
sides, a new variant of the nearest neighbor classifier named MVMCNN
is proposed by exploiting an advanced distance-formula to enhance the
classification decision. The framework is then examined and compared
with a DL-based model described in Naz and Ahuja (2020) based
on a 5-FCV scheme using the same publicly accessible dataset of
binary-class PIDD from the UCI Repository, which can be downloaded
in Kaggle (2021). It is also evaluated and compared with the DLPD
described (Zhou et al., 2020) based on a 10-FCV scheme using the same
publicly accessible dataset of multiclass Diabetes Type from the Data
World Repository (World, 2021).

3. Proposed framework

Fig. 1 illustrates a new low computational framework proposed in
this paper. A data imputation firstly processes the dataset of 𝑁 data
objects to tackle the missing values. The dataset is then divided into
training and testing sets based on 5 or 10-FCV. Next, the 𝑁 data objects
are clustered using a KMC with 𝑘 = 2 to 𝑁 to produce several clusters
with the maximum densities based on the silhouette coefficients. Merge
the small clusters, which have less than a particular number of mem-
bers, to the closest bigger cluster if possible. Otherwise, remove them.
Next, the data dimension is reduced using an AE. Next, a min–max nor-
malization (MMN) is applied to normalize the lower-dimensional data.
Finally, the normalized data is classified using nearest neighbor-based
classifiers: KNN, PNNR, LMPNN, and MVMCNN.

Moreover, merging a small cluster into the closest bigger cluster (or
removing it) is implemented using a simple procedure, as illustrated
in Fig. 2. First, search the small clusters containing 𝛼 data samples or
less. Second, for each sample in a small cluster, check if the 𝛽 nearest
neighbors of the sample are all in the same class or not, as illustrated
in Fig. 2(a). If so, keep the sample as a competent voter. Otherwise,
remove it from the small cluster since it is an incompetent voter (that
is contaminated by samples in another class), as illustrated in Fig. 2(b).
Third, check if the number of the remaining samples in the small cluster
is bigger than (or equal to) 𝛾 or not. If so, merge them to the closest
big cluster. Otherwise, remove the small cluster since it has too few
competent voters to make a decision, as illustrated in Fig. 2(c). Based
on preliminary experiments on PIDD and Diabetes Type datasets, the
three constants 𝛼, 𝛽, and 𝛾 are set to 15, 5, and 10, respectively.

The basic concept of the proposed framework is illustrated in Fig. 3.
Let the blue square be the given testing data (or query point) that
should be classified using the nearest neighbor classifier 𝑘 = 3. In the
riginal dataset, the query is wrongly classified by KNN as the red
riangle class, as depicted in Fig. 3(a). In the noise-removed dataset,
t can be classified by KNN as the green circle (see Fig. 3(c)). In
he dimensional-reduced dataset, it is more easily classified since both
lasses are far apart (see Fig. 3(e)). Meanwhile, MVMCNN can give cor-
ect classifications for all three cases. In Fig. 3(b), the query is correctly
lassified as the green circle class in the original dataset since three too-
mall commissions (clusters) containing only one data sample (outlier)
re not taken into account in the classification decision. As illustrated
n Figs. 3(d) and 3(f), it can also be classified as the true green circle
lass in the noise-removed and dimensional-reduced datasets.
3

Fig. 1. Proposed framework.

Table 1
Pima Indian Diabetes Dataset (PIDD).

Column Attribute Interval

1 Pregnancies [0, 17]
2 Glucose [0, 199]
3 Blood pressure [0, 122]
4 Skin thickness [0, 99]
5 Insulin [0, 846]
6 BMI [0, 67.1]
7 Diabetes pedigree function [0.0078, 59.4]
8 Age [21, 81]
9 Outcome (Class/Label) 1/0 (Yes/No)

3.1. Diabetes datasets

The datasets used in this research are the PIDD from the UCI data
repository and Diabetes Type from the Data World repository (World,
2021). PIDD is an imbalanced binary classification problem that con-
sists of 768 instances: 500 are negative (outcome = 0) and 268 are
positive (outcome = 1). Each instance has nine attributes: eight at-
tributes to consider and one class label, as listed in Table 1. Meanwhile,
the Diabetes Type dataset contains 1009 instances. Based on the sev-
enth attribute (Type), this dataset is a multiclass classification problem
with 631 Normal (62.54%), 205 Type2 (20.32%), and 173 Type1
(17.15%). Meanwhile, based on the eighth attribute (Class), it is a
binary classification problem with 631 False (62.54%) and 378 True
(37.46%), as illustrated in Table 2.

3.2. Data imputation

In PIDD, there are some missing values in up to ten percent of
the total data objects. Hence, a linear regression-based data impu-
tation is performed to handle the missing values. It can be easily
explained as follow. First, the correlation values between a feature
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Fig. 2. Procedure to merge or remove the small clusters.

Table 2
Multiclass Diabetes Type dataset.

Column Attribute Interval

1 Age [21, 81]
2 BS fast [0, 54]
3 BS pp [4.2, 8.8]
4 Plasma R [7.9, 13.1]
5 Plasma F [3.9, 9.1]
6 HbA1c [28, 69]
7 Type Normal/Type1/Type2
8 Class 1/0 (True/False)

(where the missing value occurs) and all the others are calculated. A
linear regression model is generated using the feature with the highest
4
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correlation. Finally, the missing value is solved by predicting based on
the developed linear regression model.

3.3. Noise removal

Like other real-world datasets, both PIDD and Diabetes Type
datasets contain noises or outliers. In this research, a KMC is used to
cluster the training set, and then a tiny cluster with less than ten data
objects is removed since it is considered noise.

3.4. Dimensionality reduction

The dimension reduction is carried out using an AE. It is an unsuper-
vised ANN, commonly used to decrease the number of features (Kan-
nadasan et al., 2019). One of its advantages is the ability to develop a
nonlinear model. It has an encoder and a decoder. The encoder maps
an original data input into a lower-dimensional latent space, and the
decoder can reconstruct it back into the original input.

Besides, AE can also be used as a data augmentation (over-sampling)
and a feature augmentation (feature expansion). In García-ordás et al.
(2021), a variational AE (VAE) is used as data augmentation and a
sparse AE (SAE) as feature augmentation. The SAE and CNN classifiers
trained jointly significantly improve the accuracy of CNN for the dia-
betes classification of PIDD. In this paper, AE is used as a dimensional
reduction.

3.5. Normalization

A normalization is implemented using an MMN, which performs a
linear transformation from the original data. Assume that 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥
are the smallest and biggest values in the feature 𝐴, respectively. As
in Pandey and Jain (2017), the MMN maps a value, 𝑥𝑖, of 𝐴 to 𝑥′𝑖 in
the interval [𝐴𝑚𝑖𝑛,𝑛𝑒𝑤, 𝐴𝑚𝑎𝑥,𝑛𝑒𝑤] as follows

′
𝑖 =

𝑥𝑖 − 𝐴𝑚𝑖𝑛
𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛

(𝐴𝑚𝑎𝑥,𝑛𝑒𝑤 − 𝐴𝑚𝑖𝑛,𝑛𝑒𝑤). (1)

.6. Nearest neighbor-based classifiers

A nearest neighbor-based classifier is a simple model with lazy
earning. However, it has three main advantages: explainability, a fast
earning process, and local decision. Hence, many researchers have
roposed various variants, such as PNNR and LMPNN.

.6.1. KNN
As the name suggests, KNN is a model that works locally based on

closest instances (nearest neighbors) out of all the data objects in the
riginal dataset used to train (Zhang et al., 2018). Each data object is a
ector in a multi-dimensional feature space with a label. KNN predicts
label of the testing data (query) using a majority voting scheme from

he 𝑘 closest data objects commonly selected by a distance of Euclidean

(𝑃 ,𝑄) =
𝑛
∑

𝑖=1
(𝑃𝑖 −𝑄𝑖)2, (2)

here P(𝑝1, 𝑝2,… , 𝑝𝑛) and Q(𝑞1, 𝑞2,… , 𝑞𝑛) are data objects and 𝑛 is
he number of attributes or features (dimension) (Harrison, 2018).
lthough KNN has some advantages, it also has one main disadvantage:

he majority voting used in KNN tends to obtain a misclassification for

noisy dataset.
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Fig. 3. Basic concept of the proposed framework.
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3.6.2. PNNR
PNNR is commonly better than KNN (Zeng et al., 2009). It works

simply using three steps. First, it finds 𝑘 closest instances (neighbors)
in every class. Second, for each class, it calculates the total distance
of 𝑘 instances using a gradual weighting depending on their rankings.
Hence, it can be said that PNNR uses a multi-voter scheme, which
makes this model outperforms KNN that uses the single-voter one.
Third, it decides the winning class by minimizing those total distances.

Moreover, the gradual weighting is straightforwardly defined by
formulating the weight 𝑊 𝑖

𝑗 of the 𝑗th neighbor 𝑥𝑖𝑗 from the class 𝑖th
as

𝑊 𝑖
𝑗 = 1

𝑗
, (3)

where 𝑗 = 1, 2,… , 𝑘 is the ascending ordered-ranking.

.6.3. LMPNN
LMPNN is another variant KNN proposed by Gou et al. (2014). It is

n improved PNNR, where it uses 𝑘 local mean vectors of the 𝑘 closest
instances. It also uses a similar neighborhood weight as in the PNNR.
However, it searches the pseudo nearest neighbors using different ways:
5

𝑘 local mean vectors.
A local mean vector �̄�𝑖𝑗 of the first 𝑗 first neighbors of the testing
data or query 𝑥 of the 𝑖th class is calculated by

̄ 𝑖𝑗 =
1
𝑗

𝑗
∑

𝑙=1
𝑥𝑖𝑙 , (4)

where 1 ≤ 𝑗 ≤ 𝑘.

3.6.4. MVMCNN
MVMCNN is proposed here based on the LMPNN previously de-

scribed in Section 3.6.3. First, it splits each class into some subclasses
or clusters (commissions). After that, it predicts the label of the testing
data (query) by choosing a commission with the lowest total distance
of 𝑘 instances, which is calculated by Eq. (4). The MVMCNN pseudo-
code, which is adopted from Suyanto et al. (2022), is shown in detail
in Algorithm 1.

Furthermore, Fig. 4 illustrates the differences between MVMCNN
with PNN and LMPNN in a binary classification problem. Suppose a
testing data (shown by a blue square), should be classified as a green
circle (Class 1) or a red triangle (Class 2). In this case, assume that the

testing data belongs to Class 1. Next, let the means of two and three
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Algorithm 1: MVMCNN
Result: 𝐶𝑏𝑒𝑠𝑡 as the output class
Split a given dataset into 𝑁𝑐 clusters based on their classes;
Name the 𝑁𝑐 clusters as 𝐶𝑖,𝑚 representing the 𝑖th class and the
𝑚th commission;
for every commission, compute the distance of LMPNN based on
Eq. (4);

Find the lowest distance 𝐶𝑖,𝑚;
Return a class with minimum distance as the output class 𝐶𝑏𝑒𝑠𝑡;

first neighbors in Class 1, weighted by 1
2 and 1

3 , are given by the orange
circles. Meanwhile, those in Class 2 are provided by the pink triangles.

When 𝑘 = 3, PNNR wrongly predicts the label of the testing data
because the minimum total distance is reached by Class 2. Similarly,
LMPNN also gives a wrong classification even though it gives a more
accurate total distance: the total distance of Class 2 is only slightly
smaller than Class 1. Meanwhile, MVMCNN correctly classifies it since
Commission 1 in Class 1 (𝐶1,1) achieves the minimum total distance
among all the generated commissions.

4. Results and discussion

The evaluation is performed in two stages. Firstly, MVMCNN is com-
peted with LMPNN using 10-FCV for ten real-world public accessible
datasets from UCI Repository for various 𝑘 = 1 to 15 to investigate
the benefit of the multi-commission model in the MVMCNN. It is not
compared to KNN and PNNR since both models are worse than LMPNN,
as examined in Gou et al. (2014). Secondly, the proposed framework
is examined using two diabetes datasets: PIDD (Kaggle, 2021) and
Diabetes Type (World, 2021).

4.1. Evaluation of the proposed MVMCNN

In MVMCNN, the 𝑘-means clustering is performed to any class to
create a few clusters (commissions). Based on preliminary observation,
the parameter 𝑐 (the number of clusters) is limited to 2 to 6. This
scheme aims to create clusters with maximum samples and silhouette
coefficients. As the datasets vary from hundreds to thousands of data
samples, the neighborhood sizes 𝑘 for MVMCNN and LMPNN are
limited to 1 to 15. Thus, when a tiny cluster containing 14 samples
or less is generated, it is merged into the closest big cluster. But, if it
is not possible to be merged due to the number of generated clusters
being only 2 (minimum), it can be accepted as it is. If it cannot be
merged because of the significant decrement of silhouette coefficient,
it is removed. Finally, MVMCNN predicts the label of the query by
selecting the commission (with information of its class) with the lowest
total distance, which is calculated using Eq. (4).

Table 3 illustrates the highest mean accuracies equipped with the
corresponding standard deviations as well as the optimum neighbor-
hood sizes 𝑘 and the Wilcoxon’s rank-sum tests (WRST) in the paren-
theses produced by LMPNN and MVMCNN for ten varying UCI datasets.
The symbols −, +, and ≈ in the parentheses show that the current
results (of 10-FCV) are significantly worse, significantly better, and
not significant than the results MVMCNN in terms of WRST using a
significance level of 0.05, respectively. The highest mean accuracies
are provided by bold texts.

MVMCNN obtains significantly higher accuracies than LMPNN for
7 out of 10 datasets: three binary-class and four multiclass. It provides
the same or slightly higher accuracies than LMPNN for two datasets:
one binary-class (Wdbc) and one multiclass (OptDigits). It gives a lower
accuracy only for one multiclass dataset of Cardiotocography. Statisti-
cally, the Friedman mean rank (FMR) test informs that MVMCNN is the
first rank with a score of 1.10, lower than LMPNN (1.80). Therefore,
6

the multi-commission scheme in MVMCNN benefits in decreasing the
Fig. 4. Differences between MVMCNN with PNN and LMPNN.

biased decision made by the single-commission in the LMPNN. The
optimum 𝑘 that gives the highest accuracies in MVMCNN are gen-
erally smaller (or equal) than the LMPNN because the classification
is conducted in each commission (not class). This fact indicates that
the classification in MVMCNN is performed by the most competent
voters in each commission without any contamination from incom-
petent voters of other commissions. However, MVMCNN may give a
worse performance because of the enforcement of clustering into two
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Table 3
The highest mean accuracies (%) and the standard deviations as well as the optimum neighborhood sizes 𝑘 and the Wilcoxon’s
rank-sum tests (WRST) in the parentheses produced by LMPNN and MVMCNN for ten UCI datasets. The symbols −, +, and ≈
in the parentheses show that the current result is significantly worse, significantly better, and not significant than the result
of MVMCNN in terms of WRST using a significance level of 0.05, respectively.

Dataset #Samples #Attributes #Classes LMPNN MVMCNN

Transfusion 748 4 2 67.80 ± 9.12(15)(−) 72.47 ± 4.29 (15)
Glass 146 9 2 81.86 ± 12.08(2)(−) 92.06 ± 12.17(1)
Parkinsons 195 22 2 77.76 ± 12.35(14)(−) 81.92 ± 11.19(10)
Wdbc 569 30 2 93.61 ± 2.94(7)(≈) 93.61 ± 2.94(7)
Wine 178 13 3 75.65 ± 7.69(13)(−) 76.01 ± 14.49(3)
Thyroid 7200 21 3 98.35 ± 1.08(10)(−) 98.40 ± 1.10(10)
Letter 7648 16 10 97.06 ± 0.44(15)(−) 97.92 ± 3.18(15)
Cardiotocography 2126 21 10 55.04 ± 5.17(13)(+) 54.89 ± 4.18(15)
OptDigits 5620 64 10 99.04 ± 0.43(9)(≈) 99.06 ± 0.40(8)
Vowel 528 10 11 63.94 ± 8.02(15)(−) 65.65 ± 5.41(8)

Friedman mean rank (FMR) 1.80 1.10
Rank 2 1
to six clusters. For instance, it is happened in the Cardiotocography
dataset due to the difficulty in generating at least two clusters in each
class. Enforcing split each class in this dataset into at least two clusters
make MVMCNN biased in the decision-making. Nevertheless, keeping
one cluster for every class makes it produce the same classification as
LMPNN.

4.2. Accuracy of the proposed framework

The experiments are performed using the PIDD based on a 5-FCV
scheme. First, PIDD is randomly split into the training sets of 4-folds
and the testing sets of 1-fold to give fair comparisons. Six different
models are then trained using KNN, KMC+KNN, and combination
models of KMC, AE, with KNN, PNNR, LMPNN, and MVMCNN.

In the first model, both imputation and normalization are performed
to the training sets, but KMC and AE are not. Hence, this model is
named KNN. It is a baseline model of diabetes detection in the proposed
framework. In the second model, a KMC is incorporated into the first
model. Therefore, it is called KMC+KNN. In the third model, an AE
is combined with the second model to be KMC+AE+KNN. Finally, the
fourth to the sixth models are KMC+AE+PNNR, KMC+AE+LMPNN, and
KMC+AE+MVMCNN that use three KNN variants: PNNR, LMPNN, and
the new proposed MVMCNN, respectively.

All the models are then evaluated to see the impact of KMC-
based noise removal and AE-based dimensional reduction in detecting
diabetes. After that, they are finally compared based on the averaged
accuracies produced from five experiments based on the 5-FCV scheme
using both PIDD and Diabetes Type datasets.

For the PIDD dataset, the results in Fig. 5 inform that KNN gets the
lowest averaged accuracy of 81.80% since it uses a majority voting on
a noisy dataset. The KMC+KNN (second model) improves the accuracy
drastically to 86.70%. This result indicates that the KMC-based noise
removal can remove the incompetent voters and keep the competent
ones.

Next, the KMC+AE+KNN model produces an averaged accuracy of
92.20%. It shows that AE, which reduces the data dimension from 8
to 3, can enhance the data distributions in both classes of PIDD. The
3-dimensional data provides the optimum features that minimize the
intra-class distance and maximize the inter-class ones.

The KMC+AE+PNNR model achieves a higher accuracy of 97.80%,
which indicates that considering multi voters in each class improves the
decision process. Next, the KMC+AE+LMPNN model slightly improves
the classification rate to 98.98%. It shows that the decision-making in
LMPNN is conceptually better than PNNR.

The KMC+AE+MVMCNN model eventually gets the highest mean
accuracy of 99.13%. It proves that the new multi-commission scheme
proposed in this paper is able to boost the decision-making in LMPNN.
In addition, this result is higher than the DL-based model that obtains
98.07%. All those results inform that the new framework proposed in
7

this paper is able to enhance KNN, where each procedure plays an
essential role as it is designed.

For the multiclass Diabetes Type classification, the proposed frame-
work produces similar results. Fig. 6 illustrates that KNN gets the lowest
averaged accuracy of 87.61%. This accuracy is higher than PIDD since
the Diabetes Type dataset contains fewer attributes and lower noises.
Furthermore, the KMC+KNN model increases the averaged accuracy
to 90.98%. This result indicates that the KMC can also remove the
incompetent voters in the Diabetes Type dataset.

Meanwhile, the KMC+AE+KNN model produces a mean accuracy of
92.47%. It shows that AE, which reduces the data dimension from 6 to
3, can enhance the data distributions in the three classes in the Diabetes
Type dataset. The 3-dimensional data provides the optimum features
that reduce intra-class distances while increasing inter-class ones.

Next, the KMC+AE+PNNR model gives a higher mean accuracy
of 93.36%. This result indicates that considering multi voters in each
of the three classes improves decision making. The KMC+AE+LMPNN
model then slightly improves the averaged accuracy to 94.55%. It
indicates that the decision-making in LMPNN is conceptually better
than PNNR.

Eventually, the KMC+AE+MVMCNN model reaches the highest
mean accuracy of 95.24%. It indicates that the proposed multi-
commission model is able to improve decision-making in LMPNN.
Impressively, this model gives higher accuracy than the DL model that
gets 94.02%. All those results indicate that our framework is capable
of increasing the KNN accuracy. Besides, they also inform that each
procedure can work as it is designed.

Compared to other machine learning models, our framework is
also better. For the dataset of PIDD with a similar evaluation scheme,
our framework significantly outperforms DT, NB, ANN, SVM, RF, and
LR (Cıhan & Coşkun, 2021), LR with the feature selection procedure,
ensemble models with max voting and stacking (Rajendra & Latifi,
2021), and Adaptive Boosting (Kalagotla et al., 2021). This result can
be achieved since our framework uses proper preprocessing procedures,
especially the one that removes noises (incompetent voters) or merges
the small clusters into the closest bigger ones.

Based on the evaluations on both PIDD and Diabetes Type datasets,
it can be implied that the conventional lazy learner KNN can be
enhanced using several procedures in the proposed framework to out-
perform the other machine learning models and also the modern deep
learner. Nevertheless, since the framework uses a KMC sensitive to
the randomly generated initial centroids, its performance may decrease
for some non-spherical distributed datasets. Besides, the MVMCNN
performance may decrease for several datasets that are hard to split
into at least two clusters for each class.
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Fig. 5. Accuracies produced by the classification models for the PIDD.
Fig. 6. Accuracies produced by the classification models for the Diabetes Type dataset.
4.3. Processing time of the proposed framework

KNN and DL have similar learning processes but are opposite during
testing, where KNN should find 𝑘 nearest neighbors needing high
computation while DL does a forward calculation quickly. Hence, to
get fairness, the evaluation of the processing time is carried out by
calculating the computational time of the learning process based on 5-
FCV using an Intel Core i7-8850H and 16 GB RAM. The computational
time of the learning process in KNN is defined as the time needed to
find the optimum 𝑘 by running the KNN 75 times for 𝑘 = 1 to 15
and for 5-FCV, where the optimum 𝑘 is the one giving the highest
mean accuracy. Meanwhile, the computational time of the learning
process in the DL-based model is defined as the time needed to find
the highest accuracy for 5-FCV using a higher-performance computer
with graphical processing units (GPU).

Fig. 7 shows that KNN gives the lowest average processing time
of 204.37 s since it has the lowest computational complexity of the
procedure of searching 𝑘 nearest neighbors. Next, the KMC+KNN model
increases the average processing time to be 299.94 s. It means that
incorporating KMC increases the processing time up to 95.57 s. Mean-
while, the combination models of KMC and AE with KNN, PNNR,
8

and LMPNN increase the average processing time to be around 680 s
because of the complexity of AE. Next, the KMC+AE+MVMCNN model
gives a longer processing time of 921.09 s since MVMCNN needs addi-
tional processes to split each class into two clusters or more and calcu-
late the total distance in each cluster. Finally, the DL-based model needs
the highest processing time because it needs some epochs to converge
to a stable high accuracy. Furthermore, the slightly longer processing
times happened to the Diabetes Type dataset since it has more samples
and more classes than PIDD, as illustrated in Fig. 7. These facts inform
that the proposed framework of KMC+AE+MVMCNN is considered the
most optimum model in terms of accuracy and processing time.

5. Conclusion

A new framework to classify diabetic patients in PIDD and Diabetes
Type datasets has been created. Besides, a new KNN variant named
MVMCNN is also proposed. The superiority of MVMCNN on the LMPNN
has been comprehensively investigated using ten benchmark datasets
from UCI Repository. Investigation on binary-class PIDD and multiclass
Diabetes Type datasets shows that the proposed framework works very
well, where each procedure gives a unique contribution. In addition,
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Fig. 7. Processing times given by the classification models for PIDD and Diabetes Type dataset.
the combination of MVMCNN with KMC and AE achieves the best
classification rate, which is slightly better than the DL-based model.
Nevertheless, the framework performance may decrease for datasets
that are non-spherical and hard to split into at least two clusters for
each class due to the KMC and MVMCNN, respectively. As future
work, MVMCNN will be combined with advanced data imputation,
noise removal, and dimensional reduction methods to overcome the
limitation and solve more complex classification problems.
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