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Many improved versions of k-nearest neighbor (KNN) have been proposed by minimizing total distances
of multi k nearest neighbors (multi-voter) in each class instead of the majority voting, such as a local
mean-based pseudo nearest neighbor (LMPNN) that give a better decision. In this paper, a new KNN vari-
ant called multi-voter multi-commission nearest neighbor (MVMCNN) is proposed to examine its bene-
fits in enhancing the LMPNN. As the name suggests, MVMCNN uses some commissions: each calculates
the total distance between the given query point (test pattern) and k pseudo nearest neighbors using the
LMPNN scheme. The decision class is defined by minimizing those total distances. Hence, the decision in
MVMCNN is obtained more locally than LMPNN. Examination based on 10-fold cross-validation shows
that the proposed multi-commission scheme can enhance the original (single-commission) LMPNN.
Compared with two single-voter models: KNN and Bonferroni Mean Fuzzy k-Nearest Neighbors (BM-
FKNN), the proposed MVMCNN also gives lower mean error rates as well as higher Precision, Recall,
and F1 Score, indicating that the multi-voter model provides a better decision than the single-voter ones.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In data mining, k-nearest neighbor (KNN) is one of the top 10
algorithms (Wu et al., 2008) in terms of popularity, where it is
widely used in various applications due to its simplicity to imple-
ment. It has been commonly used in research and application in
the big data area since it is efficient for classification, regression,
and clustering tasks. In fatal and sensitive applications, such as
medicine, military, law, and transportation, KNN is favorable due
to its explainability. Recently, in Papernot and Mcdaniel (2018)
KNN is combined with deep neural networks (DNNs) to create a
confident, interpretable, and robust deep learning.

However, KNN has four problematic issues that have been
found in the previous literature (Zhang and Member, 2019). Firstly,
KNN is generally sensitive to the neighborhood size k. The perfor-
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mance of KNN can be made worse by the outliers if k is smaller or
larger (Gou et al., 2019). It is pretty challenging to set a proper k for
a given training set since the training samples (instances) usually
have different distributions. This problem can be solved by setting
various k values to different sample subspaces (Tan et al., 2020) or
to different test samples (Bulut and Amasyali, 2017, Zhang et al.,
2017, Zhong et al., 2017, Zhang et al., 2017, Pan et al., 2017,
Zhang et al., 2018, Tan et al., 2020). Nevertheless, both solutions
increase the complexity of KNN.

Secondly, KNN is also sensitive to the distance function used to
select the k nearest neighbors. It is so challenging to identify the
most suitable distance formula for all training samples. It means
the best distance function is crucial to select the most competent
k nearest neighbors that effectively make a majority-voting deci-
sion across most training samples.

Thirdly, KNN has high complexity due to the nearest neighbor
(NN) search. It is challenging since KNN should calculate the dis-
tances of all samples to select the k nearest neighbors for each
given query (test data). A recent method called NearCount can be
used to select critical instances based on the cited counts of nearest
neighbors (Zhu et al., 2020). An optimized high order product
quantization can also be used to search approximate nearest
neighbors (Li and Hu, 2020) that achieves high query efficiency
and recall. Besides, a novel efficient method based on clustering
and adaptive k values is probably utilized to find the k-nearest
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neighbor (Gallego et al., 2022), which significantly reduces the
complexity in computation.

Fourthly, KNN gives low effectiveness for imbalanced class
datasets. The rule of majority voting used in KNN is generally suc-
cessful for balanced classes but not for the imbalanced ones (Zhang
and Member, 2019). It is challenging to design a proper classifica-
tion rule to tackle balanced and imbalanced datasets generally.

Many KNN variants have been proposed to tackle the sensitivity
of k and the classification rule. The sensitivity of k can be solved by
reducing the effects of outliers using the local mean vectors of k
nearest neighbors, such as k-harmonic nearest neighbor (KHNN)
(Pan et al., 2017; Gou et al., 2019), local mean-based KNN (LMKNN)
(Mitani and Hamamoto, 2006), local mean-based pseudo NN
(LMPNN) (Gou et al., 2014), multi-local means based NN (MLMNN)
(Gou et al., 2017).

The sensitivity of k can also be affected by the classification rule
of majority voting since each neighbor has the same weight, which
uses the principle of a democratic system: ”one man one vote.”
However, nearest neighbors in the actual datasets usually have dif-
ferent contributions to classify a given query point. Therefore,
some KNN variants that use weighted voting have been proposed
to address this issue, such as distance-weighted KNN (Dudani,
1976), pseudo nearest neighbor (PNN) (Zeng et al., 2009), collabo-
rative representation-based nearest neighbor (CRNN) (Li et al.,
2015), weighted representation-based KNN (WRKNN) (Gou et al.,
2019), weighted local mean representation-based KNN
(WLMRKNN) (Gou et al., 2019), weighted discriminative collabora-
tive competitive representation (WDCCR) (Gou et al., 2020), double
competitive constraints-based collaborative representation for
classification (DCCRC) (Gou et al., 2020), fuzzy k-nearest neighbor
in every class (FkNNC) (Parande and Suyanto, 2019), and
Bonferroni-mean based fuzzy k-nearest neighbor (BM-FKNN)
(Mailagaha Kumbure et al., 2020).

However, all those KNN variants apply the local mean or the
weighted voting scheme on each class, making them still sensitive
to the outliers. Therefore, this paper proposes a new KNN variant
named multi-voter multi-commission nearest neighbor
(MVMCNN). It is inspired by the decision-making in a parliament
with some commissions. The best decision on a particular issue,
such as medicine, should be made by the health commission (as
the most competent one). In MVMCNN, the data objects in each
class are firstly clustered into some clusters (commissions). Next,
the LMPNN is applied to each cluster instead of each class. How-
ever, this model is an early version of MVMCNN to keep low com-
plexity. Improved versions can be developed using more advanced
base models, such as WRKNN, WLMRKNN, WDCCR, DCCRC, or BM-
FKNN. The proposed MVMCNN is then comprehensively evaluated
based on the 10-fold cross-validation (FCV) using 30 datasets taken
from the University of California Irvine (UCI) Machine Learning
Repository (Irvine, 2021). Finally, its performance is analyzed and
compared with KNN, LMPNN, and BM-FKNN using statistical tests
of Friedman and Wilcoxon to see the significance of both accuracy
and sensitivity of k.

Next, this paper is organized as follows. Brief reviews of the
related works are given in Section 2. The motivation, concept,
and detailed algorithm of the proposed MVMCNN are described
in Section 3. Next, Section 4 provides a comprehensive evaluation,
analysis, and discussion of MVMCNN performance. Finally, Sec-
tion 5 gives the conclusions.
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2. Related work

Based on the k nearest neighbors used in the classification rules,
the nearest neighbor-based classifiers can be categorized into two
schemes: single k-voters and multi k-voters. In the single-voter
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scheme, the k nearest neighbors (voters) are selected from all data
objects in the training set, as used in KNN, WKNN, and BM-FKNN.
In contrast, in the multi-voter scheme, the k nearest neighbors are
chosen from each class; thus, they are named pseudo (not actual)
nearest neighbors, as used in PNN, LMPNN, FkNNC, CRNN, WRKNN,
WLMRKNN, WDCCR, and DCCRC.

In this research, MVMCNN is proposed as a novel nearest-
neighbor variant to improve the multi-voter-based methods by
introducing a multi-commission scheme. The LMPNN is chosen
as the base model of MVMCNN because of two reasons. First, it is
simple to implement and proven to outperform PNN (Gou et al.,
2014). Second, it can be used as an early model to evaluate the ben-
efits of the proposed multi-commission scheme. Once the multi-
commission scheme shows many advantages, MVMCNN can be
improved in the future by using any advanced multi-voter KNN
variant, such as CRNN, WRKNN, WLMRKNN, WDCCR, and DCCRC.

Furthermore, the preliminary version of MVMCNN, built from a
base model of LMPNN, is evaluated and compared to the original
LMPNN using 30 datasets from UCI (Irvine, 2021) to see the bene-
fits of the proposed multi-commission scheme. It also compared
with two single-voter methods: KNN and BM-FKNN, to examine
how significant its performance is. Here, the error rate and stability
of k are selected as the performance metrics to give a focus to the
detailed experiments. Besides, the statistical tests of Friedman and
Wilcoxon are employed to see the significance of both metrics.
More detailed performance metrics: Precision, Recall, and F1 Score,
are also used here to verify the results, especially for several data-
sets with high-fatality and imbalanced-class.

2.1. k-nearest neighbor

KNN locally makes a decision using a certain number of closest
data objects (nearest neighbors or voters) in the training set (Zhang
et al., 2018). In a classification task, it classifies a given query or
unlabelled test sample using a majority voting based on the k near-
est neighbors from all classes (single-voter scheme), which is
selected using a certain metric of distance or dissimilarity depend-
ing on the attribute types. For numerical data, dissimilarity is usu-
ally calculated using the Euclidean distance as

dðX;YÞ ¼
Xn
i¼1

ðXi � YiÞ2; ð1Þ

where X and Y are data objects while n is the dimension (Harrison,
2018).

KNN has two steps that are not efficient in performing a classifi-
cation task. The first step is the training process, which stores all
data objects (training set) in the memory and finds the optimum k
that provides the highest accuracy and generalizes unseen data in
the future. It does not generate any model like the decision tree,
neural network, or support vector machine. Meanwhile, the second
step is the classification process. Each time classifying a given query,
KNN should examine all the training samples to find k nearest ones.

KNN is easy to implement by setting an optimum k. The deci-
sion can be easily tracked so that the classification model can be
updated quickly. Besides, it works locally, only considering the
amount of data to be suitable for datasets that are grouped locally,
where there are several separate data in a class. Nevertheless, it is
not robust to the outliers due to the sensitivity of k and the too-
simple classification rule of majority voting.

2.2. Pseudo nearest neighbor

The PNN is one of the KNN variants that have been proven to per-
form better than KNN for many datasets (Zeng et al., 2009). Based on
the multi-voter scheme, PNN works by calculating the total distance
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of k nearest neighbors in each class and then choosing a class with
the lowest total distance as the classification decision (output).
Those k neighbors are weighted gradually based on their distance-
based rankings. The weight of the jth neighbor is formulated as
one divided by j so that the first rank (the closest) neighbor weights
1; the second rank one weights 1

2, and so on. In other words, the
weights gradually decrease for the further neighbors so that the fur-

thest neighbor has the lowest weight. The neighborhood weight Wi
j

of the jth neighbor xij from the class ith is formulated as

Wi
j ¼

1
j
; ð2Þ

where j ¼ 1;2; . . . ; k is the distance-based ranking in ascending
order.

Using Eq. (2), PNN gives a better work since it uses k nearest
instances in each class to make a decision, which is conceptually
better to tackle outliers or anomalies. This concept can be analo-
gous to real life that the voice of the closest person should be more
trusted than those who are further away.

2.3. Local mean pseudo nearest neighbor

LMPNN is a KNN variant that combines both LMKNN and PNN
(Gou et al., 2014). Similar to PNN, the LMPNN is also developed
using the multi-voter scheme and the neighborhood weight.
Unlike PNN that selects the pseudo nearest neighbor in each class
using the categorical k nearest neighbors, LMPNN finds them based
on the categorical k local mean vectors. In LMPNN, the local mean
vector �xij of the first j nearest neighbors to a query point x from the
ith class is defined as

�xij ¼
1
j

Xj

l¼1

xil; ð3Þ

where 1 6 j 6 k.
Comprehensive experiments on 39 datasets: 32 UCI, 4 artificial,

and 3 images show that LMPNN is more effective and robust than
LMKNN, PNN, CFKNN, WKNN, and KNN classifiers.

2.4. Bonferroni mean fuzzy k-nearest neighbors

BM-FKNN is an improved version of the Fuzzy KNN (FKNN) that
incorporates each class’s ”degree of truth” into KNN to make a
majority voting-based decision. In the FKNN, class membership is
assigned to a sample vector. Membership degree of the jth sample
in the ith class of the training set is calculated as the inverse of the
distances between the query y and k closest neighbors in the ith
class formulated as (Keller et al., 1985)

ui ¼

Xk
j¼1

uijð1=jjy� xjjj2=ðm�1ÞÞÞ

Xk
j¼1

ð1=jjy� xjjj2=ðm�1ÞÞÞ
ð4Þ

wherem 2 ð1;þ1Þ is a weight to define the neighbors’ contribution
to the membership degree. As suggested in Keller et al. (1985), in
this research, m is set to 2, which is commonly used.

Different from FKNN, the BM-FKNN (Mailagaha Kumbure et al.,
2020) utilizes the Bonferroni mean to calculate the local mean vec-
tors. As described in Bonferroni (1950), Bonferroni mean is formu-
lated as:

Bp;qðXÞ ¼ 1
n

Xn
i¼1

xpi
1

n� 1

Xn
i;j¼1;j–i

xqj

 ! ! 1
pþq

ð5Þ

2

2
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4
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10
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7
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where x ¼ ðx1; x2; . . . ; xnÞ; xi 2 ½0;1� 8i 2 N is a vector with at least
one xi – 0 8i ¼ 1;2; . . . ;n while p and q are two parameters greater
than or equal to 0. In this research, they are set to p ¼ 1 and q ¼ 2,
respectively, as recommended for many datasets (Mailagaha
Kumbure et al., 2020).

BM-FKNN has similar steps to FKNN. First, it estimates the dis-
tances between the given query (or testing data) and the training
data. Next, k nearest neighbors are defined and grouped into
sub-samples based on their classes. Furthermore, the Bonferroni
mean vectors are calculated for the sub-samples representing each
class. The distances between the query and those local vectors are
then calculated to get the membership degrees based on Eq. 4. By
maximizing the membership degrees, the query is finally classified
as the highest membership degree class.

Different from KNN that directly compares a given query to k
nearest neighbors, BM-FKNN uses the representative vectors for
each class. The representative vectors are locally created using
local sub-samples represented by the k nearest neighbors and
well-positioned to perceive the class information. The local means
can tackle the problems with imbalanced-class and similar
interclass-samples (Mailagaha Kumbure et al., 2020). However,
like KNN that uses a single-voter scheme, the value of k in BM-
FKNN can be susceptible. A low k may not be enough to capture
a large class-representative sub-samples so that the accurate local
Bonferroni mean vectors are failed to create. In contrast, a too–high
k can probably make the outliers (considered incompetent voters)
affect the decision-making.

4

8

3. Proposed MVMCNN

Similar to LMPNN, the proposed MVMCNN is also developed
using the multi-voter scheme and the neighborhood weight. How-
ever, MVMCNN is developed using a multi-commission scenario.
First, the data objects in each class are clustered into some clusters
(commissions). The optimum number of clusters is defined by
maximizing the silhouette coefficient and the number of samples
in the cluster. Next, it classifies a query point by minimizing the
LMPNN distances of those commissions, where the total weighted
rank-based distances of k instances in each commission is calcu-

lated using Eq. (3). Hence, in MVMCNN, the local mean vector �xh;ij

of the first j nearest neighbors to a query point x from the hth clus-
ter and ith class is defined as

�xh;ij ¼ 1
j

Xj

l¼1

xil; ð6Þ

where 1 6 j 6 k;1 6 h 6 Nc , and Nc is the optimum number of clus-
ters created using c-means clustering.

Finally, the best class decision Cbest with the minimum distance
among all the commissions is determined as

Cbest ¼ argmin
i

�xh;ij : ð7Þ

Conceptually, the differences between MVMCNN and three previ-
ous methods KNN, PNN, and LMPNN, are depicted in Fig. 1. Suppose
all methods use k ¼ 3 to classify a given query point (purple square)
into two classes: Class 1 (blue circle) and Class 2 (red triangle). Class
1 contains three clusters, which can be seen on the top, middle, and
bottom, while Class 2 consists of two clusters on the top and bot-
tom. Moreover, the orange circles represent the means of two and
three first nearest neighbors with the weights of 1

2 and 1
3, respec-

tively, in Class 1 and all the commissions. Meanwhile, the green tri-
angles are the means of two and three first nearest neighbors with
the weights of 1

2 and 1
3, respectively, in Class 2 and all the

commissions.

24



Fig. 1. Difference between KNN, PNN, LMPNN, and MVMCNN.
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With k ¼ 3, KNN wrongly classifies the query point into Class 2
(red triangle) since 2 out of 3 nearest neighbors are the red trian-
gles. Using k ¼ 3, PNN also fails to classify the query since the total
distance between the query and the three nearest red triangles is
less than that of the three closest blue circles. This failed classifica-
tion is caused by the closest blue circles come from three different
clusters, which make a bias decision. Besides, the three nearest red
triangles also come from different clusters (one triangle from the
first cluster and the rest from the second cluster). This problem
can be analogous to a decision made by some members of the
incompetent commissions that produces a bias decision.

Next, although the local means of the first j neighbors in each
class gives more precision total distances, LMPNN wrongly classi-
fies the query point. In this case, the total distance between the
query point and the three closest red triangles is slightly smaller
than the three blue circles. This wrong classification is also caused
by the closest neighbors coming from different clusters and, unfor-
tunately, the local means still give a bias decision.

In contrast, MVMCNN successfully classifies the query point
into Class 1 (blue circle) since Commission 1 in Class 1 (C1;1) gives
a smaller total distance than all the other commissions in all
classes. This classification is successful because all the closest blue
circles and red triangles come from dense clusters, which are most
competent to make a decision. There is no nearest neighbor from
different clusters that makes a biased decision in calculating the
local means. This successful classification can be analogous to the
right decision made by several members of the competent com-
missions without interference by some members of the other
incompetent commissions.

The pseudo-code of MVMCNN is depicted in Algorithm1. It con-
sists of five steps. First, the data objects in each class are clustered
(using c-means clustering method) into several optimum clusters
by maximizing both silhouette coefficient and cluster members.
Here, the number of clusters for each class is limited to an interval
[2, 6], which is found by a preliminary observation: each class in
the thirty UCI datasets is maximally clustered into six clusters with
high silhouette coefficients.

2

3

3
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Algorithm1: MVMCNN

Result: Cbest as the output class
Cluster data in each class into optimum clusters of Nc by

maximizing both silhouette coefficient and cluster
members

Name the Nc clusters as Ci;m that represent the ith class and
the mth commission

for each commission, calculate the distance using Eq. (7)
Find the minimum distance from all the commissions Ci;m

Return the ith class with the lowest distance as the output
class Cbest

Next, the Nc clusters are named as Ci;m that represent the ith
class and the mth commission. For each commission, the total dis-
tance between the k pseudo nearest neighbors and the given query
is determined using Eq. (7). Next, the total distances from all the
commissions Ci;m are minimized. Finally, the ith class with the low-
est total distance is returned as the output class Cbest .

In MVMCNN, each class can be split into two or more
commissions using any clustering method, such as c-means,
DBSCAN, fuzzy clustering, or the others. However, since MVMCNN
is designed to be general for various datasets, it utilizes the
c-means clustering that is simple with only one easy-to-tune
parameter: number of clusters c. Meanwhile, DBSCAN requires
two should-define-carefully parameters: radius and minimum
points.

The clustering method plays an essential role in MVMCNN. It
should generate clusters with the highest density possible. Thus,
it is designed to maximize the silhouette coefficient and the num-
ber of samples in a cluster. Since the maximum k is set to 15, the
number of samples in each cluster should be limited to 15. Hence,
if the clustering generates a small cluster with less than 15 sam-
ples, the cluster will be merged into the closest one. However, if
the small cluster cannot be merged because the number of clusters

2
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is only 1 (minimum) or there is difficulty creating more than one
cluster, it is kept as one cluster. Hence, for such a case, MVMCNN
will perform equal to LMPNN since it does not split them into some
clusters. In other words, it uses the original (single-commission)
LMPNN. Therefore, it can be expected that MVMCNN guarantees
to perform better than (or at least equal to) LMPNN.

Furthermore, since the UCI datasets are commonly small, the c-
means clustering is applied with c ¼ 1 to 6. Since this method is
sensitive to the randomly generated initial points, it is applied to
each class for some trials, and then the clusters with maximum sil-
houette coefficients are selected as the optimum commissions. It
increases the computational cost but gives a higher probability of
obtaining the maximum density clusters.
4. Results and discussion

The proposed MVMCNN is then comprehensively evaluated
based on 10-fold cross-validation using 30 datasets taken from
UCI repository (Irvine, 2021). Then, its performance is analyzed
and compared with the three competitors using the statistical tests
of Friedman and Wilcoxon to see the significance of both accuracy
and sensitivity of k. Moreover, both Friedman mean rank and Wil-
coxon rank sum tests are used to check the superiority of the
MVMCNN. The experiments are carried out using an Intel Core
i5-8300H processor and 8 GB of DDR4 with GPU NVidia Geforce
GTX 1050Ti.

12
4.1. UCI datasets

The thirty datasets that have numerical attributes are taken
from the UCI repository (Irvine, 2021) to make the experiments
simple by exploiting the Euclidean distance. There are fifteen
binary-class and fifteen multiclass classification problems. All the
datasets are in the original version, without any preprocessing,
except the four datasets marked with ”*”: Glass, Ecoli, Wine Qual-
ity Red, and Letter. Several classes containing a few samples in
those first three datasets are removed to simplify the classification
task. In contrast, the Letter dataset is subsampled to reduce the
number of samples. The datasets have various samples: from 146
(Glass) to 10,992 (PenDigits). Besides, they also have varying
dimensionality: from 3 (Haberman) to 856 (CNAE).
4.2. Optimum clusters

In MVMCNN, clustering is applied to each dataset to generate
some commissions in each class. It is run to maximize the silhouette
coefficient and the number of samples in a cluster. Since MVMCNN
is implemented using LMPNNwith k ¼ 1 to 15 (Gou et al., 2014), the
number of samples contained in each cluster in MVMCNN is limited
to 15. Hence, if the clustering generates a small cluster with less
than 15 samples, the cluster will be merged into the closest one.
However, if the small cluster cannot be merged because the number
of clusters is only 1 (minimum), it is accepted.

Here, the c-means clustering method is applied to each dataset
five times with c ¼ 1 to 6. It means that the number of clusters for
each class is limited to an interval [1, 6] since the UCI datasets are
commonly quite small. For instance, the dataset of Glass contains
146 samples: 70 in Class = 1 and 76 in Class = 2. The samples
in each class are clustered into two or three clusters depending
on the splitting result of 10-FCV. Another example, the dataset of
Ecoli consists of 307 samples with four classes: cp = 143, im
= 77, imU = 35, and pp = 52. The samples in each class are clus-
tered into two or three clusters depending on the splitting result
of 10-FCV, as illustrated in Table 1.
6296
4.3. Classification performances

The classification performances of MVMCNN and the competi-
tors: KNN, LMPNN, and BM-FKNN, are evaluated using thirty UCI
datasets. The evaluation is performed using 10-FCV to see the error
rate. In each dataset, the training samples are randomly divided
into ten folds. Next, ten experiments are carried out to produce
ten different classification error rates. Each experiment uses fifteen
neighborhood sizes, from k ¼ 1 to 15. The performance is deter-
mined by averaging the ten lowest error rates at the optimum k.

Table 2 illustrates the mean lowest error rates of KNN, LMPNN,
BM-FKNN, and MVMCNN with the corresponding standard devia-
tions and neighborhood sizes k in the parentheses. The lowest error
rates are given in the bold text. It can be seen that MVMCNN gives
the lowest error rates among the competitors for 17 out of 30 data-
sets: 9 binary-class and 8 multiclass problems. Meanwhile, KNN,
LMPNN, and BM-FKNN win only for 4, 5, and 10 datasets, respec-
tively. Besides, MVMCNN also gives low standard deviations that
indicate its stability. The statistical test places MVMCNN at the first
rank with a Friedman mean rank of 1.66, much smaller than KNN,
LMPNN, and BM-FKNN, which produce 3.28, 2.52, and 2.24,
respectively.

In general, MVMCNN outperforms all the competitors for the
datasets with many attributes, such as CNAE, Musk1, HillValley,
and Musk2 that contain 856, 166, 100, and 166 attributes, respec-
tively. These results are achieved since those datasets contain
many samples that can be clustered into several commissions.
Thus, the multi-commission classification used in MVMCNN effec-
tively reduces the bias decision made by the class-based distance
in the LMPNN and majority voting in KNN and BM-FKNN.

Furthermore, the optimum k values giving the lowest error rates
in MVMCNN are commonly lower than or the same as in the LMPNN
since the decision is made in each cluster instead of each class. These
results show that the decision of MVMCNN is made by the smaller
number of the most competent voters in each cluster, with no inter-
ference from incompetent ones from other clusters.

Nevertheless, the comparison of the classification error rate
above is not statistically convincible. Therefore, a statistical test
called the Wilcoxon rank sum test with 95% confidence is used
to show the significance of MVMCNN compared with both KNN,
LMPNN, and BM-FKNN. Wilcoxon rank-sum test is the sum of the
ranks for observations from one of the samples, commonly used
to test whether two samples are likely to derive from the same
population. In other words, it examines if the two populations have
the same shape or not. Here, the Wilcoxon rank sum test is applied
to the pairwise of the ten error rates (from ten experiments)
obtained by KNN, LMPNN, BM-FKNN, and MVMCNN for each
dataset.

Table 3 illustrates Wilcoxon’s rank sum test of the KNN, LMPNN,
and BM-FKNN versus the proposed MVMCNN for the thirty UCI
datasets. The symbols ”�” or ”+” represents that the current result
is significantly worse or better than the result of MVMCNN in
terms of Wilcoxon’s rank sum test at a 0.05 significance level,
respectively, while the symbol ”�” denotes a similar (not signifi-
cant) result. It can be seen that MVMCNN significantly outperforms
KNN for 23 datasets, ties for one dataset of Banknote, and loses for
6 datasets. It is also much better than LMPNN for 21 datasets and
ties for 9 datasets. Finally, it significantly outperforms BM-KNN for
16 datasets, ties for 2 datasets: Climate Model Simulation Crashes
and Wdbc, and loses for 12 datasets.
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4.4. Stability of k

The robustness of MVMCNN is finally investigated based on the
sensitivity of k in comparison with the competitors. The experi-



Table 1
Number of clusters in each class for the Ecoli dataset.

Fold Class = cp Class = im Class = imU Class = pp

1 2 2 2 2
2 2 2 2 2
3 3 3 3 3
4 2 3 3 2
5 2 2 2 2
6 2 2 2 2
7 3 2 3 3
8 3 3 3 2
9 2 2 2 2
10 2 2 2 2

Table 2
The lowest mean error rates (%) produced by KNN, LMPNN, BM-FKNN, and MVMCNN as well as the corresponding standard deviations and k in the parentheses for thirty UCI
datasets.

Dataset #Sample #Attribute #Class KNN LMPNN BM-FKNN MVMCNN

Parkinsons 195 22 2 20.63 � 8.61 (15) 22.24 � 12.35 (14) 15.17 � 7.6 (8) 18.08 � 11.19 (10)
Glass* 146 9 2 8.7 � 3.54 (3) 6.63 � 5.01 (7) 9.04 � 8.27 (1) 6.25 � 3.92 (8)
Climate Model SC 540 18 2 8.52 � 0.96 (15) 10.19 � 2.79 (15) 9.45 � 1.05 (15) 9.63 � 1.7 (15)
Musk1 476 166 2 19.48 � 9.81 (2) 17.81 � 9.72 (12) 18.3 � 4.46 (2) 17.18 � 9.2 (13)
Transfusion 748 4 2 26.07 � 8.99 (14) 32.2 � 9.12 (15) 23.28 � 4.67 (4) 27.53 � 4.29 (15)
Wdbc 569 30 2 6.67 � 4.38 (10) 6.39 � 2.94 (7) 6.39 � 3.22 (13) 6.39 � 2.94 (7)
Plrx 180 12 2 29.1 � 2.17 (8) 36.78 � 8.49 (15) 30.79 � 14.15 (2) 26.99 � 5.72 (11)
Haberman 306 3 2 24.86 � 10.13 (5) 33.90 � 4.11 (13) 26.46 � 7.42 (2) 33.55 � 16.98 (13)
HillValley 1,212 100 2 41.58 � 4.87 (1) 35.72 � 4.01 (15) 37.58 � 3.94 (4) 29.62 � 8.49 (15)
Ionosphere 351 34 2 11.67 � 5.58 (2) 11.67 � 7.02 (13) 10.19 � 4.14 (2) 11.10 � 6.64 (15)
Wpbc 198 32 2 21.66 � 6.98 (2) 21.24 � 6.34 (13) 23.17 � 11.23 (2) 20.24 � 5.54 (13)
Sonar 208 60 2 39.07 � 5.48 (2) 38 � 2.73 (6) 38.68 � 4.42 (8) 37.98 � 2.78 (8)
Banknote 1,372 4 2 0.00 � 0.00 (2) 0.07 � 0.23 (1) 0.00 � 0.00 (3) 0.07 � 0.23 (1)
QSAR biodegradation 1,055 41 2 20.29 � 5.92 (3) 19.26 � 6.82 (15) 19.46 � 2.76 (5) 19.16 � 6.75 (15)
Musk2 6,598 166 2 18.26 � 16.92 (14) 17.69 � 15.31 (15) 22.83 � 1.19 (8) 16.85 � 16.01 (15)
Wine 178 13 3 25.2 � 10.05 (1) 24.35 � 7.69 (13) 24.02 � 7.41 (7) 23.99 � 14.49 (3)
Seed 210 7 3 9.05 � 9.64 (11) 11.43 � 10.58 (3) 7.62 � 6.02 (12) 10.48 � 7.38 (12)
Thyroid 7,200 21 3 1.8 � 0.75 (6) 1.65 � 1.08 (10) 1.46 � 0.52 (5) 1.60 � 1.10 (10)
Ecoli* 307 7 4 14.01 � 4.76 (7) 15.47 � 4.11 (13) 14.35 � 8.09 (4) 15.47 � 4.11 (13)
Robot Navigation 5,456 4 4 2.66 � 0.87 (1) 2.52 � 0.75 (3) 2.66 � 0.63 (1) 2.52 � 0.75 (3)
Wine Quality Red* 1,571 11 4 51.91 � 3.71 (13) 51.53 � 4.48 (14) 44.27 � 4.42 (8) 50.83 � 4.56 (14)
Page-Blocks 5,473 10 5 4.06 � 1.03 (3) 3.11 � 0.80 (9) 3.93 � 0.78 (5) 3.11 � 0.80 (9)
LandsatSatellite 6,435 36 6 11.66 � 2.2 (1) 9.29 � 1.69 (15) 7.41 � 1.03 (11) 9.25 � 1.78 (15)
CNAE 1,080 856 9 11.58 � 1.46 (14) 8.98 � 2.9 (15) 9.91 � 2.1 (13) 8.80 � 3.12 (15)
Letter* 7,648 16 10 4.35 � 0.48 (3) 2.94 � 0.44 (15) 3.00 � 0.28 (15) 2.08 � 3.18 (15)
Cardiotocography 2,126 21 10 47.88 � 4.43 (7) 44.96 � 5.17 (13) 46.38 � 2.97 (15) 44.96 � 5.17 (13)
PenDigits 10,992 16 10 0.69 � 0.22 (1) 0.25 � 0.14 (13) 0.45 � 0.25 (11) 0.25 � 0.14 (13)
OptDigits 5,620 64 10 1.55 � 0.76 (3) 0.96 � 0.43 (9) 0.82 � 0.43 (13) 0.94 � 0.4 (8)
Vowel 528 10 11 36.26 � 5.78 (1) 36.06 � 8.02 (15) 36.26 � 1.73 (2) 35.35 � 5.41 (8)
Libras Movement 360 90 15 16.39 � 15.01 (1) 15.00 � 13.04 (5) 13.89 � 6.14 (13) 15.00 � 13.04 (5)

Friedman Mean Rank 3.28 2.52 2.24 1.66
Rank 4 3 2 1
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mental results are given in terms of the mean error rates with vary-
ing k (from 1 to 15) for each dataset. The thirty datasets are split
into two divisions: binary-class and multiclass problems (each
has fifteen datasets) to give clear comparisons.

Fig. 2 illustrates the mean error rates with varying k (from 1 to
15) obtained by KNN, LMPNN, BM-FKNN, and MVMCNN for the fif-
teen binary-class datasets. It shows that KNN produces the lowest
stability of k, where the mean error rates fluctuate, for the most (13
out of 15) binary-class datasets. The mean error rates are generally
low for odd k but higher for even k since the majority voting pro-
duces ties decisions, making KNN works randomly. It gives high
stability of k only for two datasets: Glass and Banknote. These
results inform that the majority voting scheme is not robust to
make a classification decision in the binary-class datasets.
6297
Like KNN, the BM-FKNN is also unstable for 13 out of 15 binary-
class datasets and stable only for two datasets: HillValley and
QSAR biodegradation. In general, it obtains high mean error rates
for k ¼ 1, and then stable for small k ¼ 2 to 6, but unstable for
the higher k (7 or more). These results are affected by the single-
voter scheme with majority voting used in BM-FKNN. A low k is
not enough to capture a large class-representative sub-samples
so that the accurate local Bonferroni mean vectors are failed to cre-
ate. Contrarily, a too–high k makes the outliers (incompetent vot-
ers) give a wrong decision.

Next, LMPNN gives high stable mean error rates for 13 out of 15
binary-class datasets. It produces low stability only for two data-
sets: Glass and Sonar. These results indicate that the weighted
multi-voter scheme (that considers weighted local means of



Table 3
The Wilcoxon’s rank sum test of the KNN, LMPNN, and BM-FKNN versus the proposed MVMCNN for the thirty UCI datasets. The symbols � or + represents that the current result
is significantly worse or better than the result of MVMCNN in terms of Wilcoxon’s rank sum test at a 0.05 significance level, respectively, while the symbol � denotes a similar
(not significant) result.

Dataset # Samples # Attributes # Classes KNN LMPNN BM-FKNN

Parkinsons 195 22 2 � ** � +
Glass* 146 9 2 � � �
Climate Model Simulation Crashes 540 18 2 + � �
Musk1 476 166 2 � � �
Transfusion 748 4 2 + � +
Wdbc 569 30 2 � � �
Plrx 180 12 2 � � �
Haberman 306 3 2 + � +
HillValley 1,212 100 2 � � �
Ionosphere 351 34 2 � � +
Wpbc 198 32 2 + � �
Sonar 208 60 2 � � �
Banknote 1,372 4 2 � � +
QSAR biodegradation 1,055 41 2 � � �
Musk2 6,598 166 2 � � �
Wine 178 13 3 � � �
Seed 210 7 3 + � +
Thyroid 7,200 21 3 � � +
Ecoli* 307 7 4 + � +
Robot Navigation 5,456 4 4 � � �
Wine Quality Red* 1,571 11 4 � � +
Page-Blocks 5,473 10 5 � � �
LandsatSatellite 6,435 36 6 � � +
CNAE 1,080 856 9 � � �
Letter* 7,648 16 10 � � �
Cardiotocography 2,126 21 10 � � �
PenDigits 10,992 16 10 � � �
OptDigits 5,620 64 10 � � +
Vowel 528 10 11 � � �
LibrasMovement 360 90 15 � � +

Wilcoxon (�) 23 21 16
Wilcoxon (�) 1 9 2
Wilcoxon (+) 6 0 12
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k-nearest neighbors in each class) used in LMPNN can make a bet-
ter classification than the single-voter decision (with a ‘‘one man
one vote” majority voting rule) used in KNN.

Meanwhile, the proposed MVMCNN is the most robust com-
pared with both KNN, LMPNN, and BM-FKNN, where the various
k (from 1 to 15) give stable mean error rates for the most (14 out
of 15) binary-class datasets. The MVMCNN produces low robust-
ness only for the Glass dataset, where the mean error rates are
quite low only for small k (1 to 3), but the bigger the k (4 to 15),
the higher the error rates.

Furthermore, the sensitivity of k given by MVMCNN is similar to
that produced by LMPNN in four cases: Climate Model Simulation
Crashes, Musk1, Ionosphere, and QSAR biodegradation, but
MVMCNN gives lower error rates. It is the same as LMPNN for both
Wdbc and Banknote datasets. These results prove that the pro-
posed multi-commission decision used in MVMCNN is capable of
enhancing the decision rule in LMPNN for the fifteen binary-class
datasets.

Next, Fig. 3 illustrates the mean error rates with varying k (from
1 to 15) given by KNN, LMPNN, BM-FKNN, and MVMCNN for the
fifteen multiclass datasets. It can be seen that KNN produces the
lowest stability of k, where the mean error rates are fluctuating,
for the most (12 out of 15) multiclass datasets. It is stable only
for three datasets: Ecoli, Page-Blocks, and LandsatSatellite. These
results also inform that the majority voting scheme is not robust
to make a classification decision for the multiclass datasets.

Meanwhile, BM-FKNN obtains higher stabilities than KNN. It
stables for the most (9 out of 15) multiclass datasets. Similar to
the results in binary-class datasets, it obtains high mean error rates
for k ¼ 1, and then stable for small k ¼ 2 to 6, but unstable for k ¼ 7

5
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or more. These results indicate that the BM-FKNN provides an
improvement for the single-voter scheme with majority voting
since it considers the representative vectors for each class, instead
of the direct closest samples.

In contrast, LMPNN gives high stable mean error rates for all the
multiclass datasets. These results indicate that the multi-voter
scheme with weighted local mean distance used in LMPNN can
make a better decision than the single-voter rule used in KNN.

Finally, the proposed MVMCNN gives stable error rates for 13
out of 15 multiclass datasets. It provides low robustness only for
both Ecoli and LibrasMovement datasets, where the error rates
are low for small k (1 to 3), but the bigger the k (4 to 15), the higher
the error rates. These results are caused by the small size of the
datasets, with 307 and 360 samples belonging to 4 and 15 classes.
It informs that the proposed multi-commission decision used in
MVMCNN can fail to enhance the LMPNN for small multiclass data-
sets since only a small number of commissions can be generated.

4.5. Precision, recall, and F1 score

Most of the datasets used in this research are considered
balanced-classes. Meanwhile, 10 out of 30 (33.34%) are categorized
as imbalanced-classes with the positive labeled data is slightly
fewer than the negative and the rest (6 out of 30 or 20%) datasets
are imbalanced-classes with much fewer positive labeled data,
namely Climate Model Simulation Crashes, Tyroid, Ecoli, Wine
Quality Red, Page-Blocks, and Cardiotocography.Table 4 shows
the Precision, Recall, and F1 Score given by MVMCNN and the other
methods, where the values in parentheses indicate the optimum
neighborhood size k. It can be seen that all methods give the same

22



Fig. 2. Mean error rates given by KNN, LMPNN, and MVMCNN using various k for the binary-class datasets.
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optimum k as used in the error rate metric for the balanced-class
datasets since the formula of the F1 Score can be considered equiv-
alent to Accuracy when the numbers of data in the positive and
negative classes are the same (or similar). However, the optimum
k are different from those used in the error rate metric for
imbalanced-class datasets, especially those with much fewer
positive-labeled data.
6299
MVMCNN gives the highest performance in terms of Precision,
Recall, and F1 among the competitors. It reaches better (or equal)
metrics for 17 out of 30 datasets: 9 binary-class and 8 multiclass
problems. Meanwhile, KNN, LMPNN, and BM-FKNN perform better
only for 4, 5, and 10 datasets, respectively. The Friedman mean
rank places MVMCNN at the first rank with 1.70 while KNN,
LMPNN, and BM-FKNN produce 3.17, 2.43, and 2.23, respectively.
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Fig. 3. Mean error rates given by KNN, LMPNN, and MVMCNN using various k for the multiclass datasets.
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These results indicate that the proposed multi-commission
scheme, which makes a more local decision, can better classify
imbalanced-class datasets.

4.6. Usability

Those results show that the proposed multi-commission
scheme gives a benefit to the LMPNN as one of the multi-voter
KNN variants by reducing the error rate and increasing the k stabil-
ity. Therefore, MVMCNN can probably be used to improve the
recent multi-voter KNN variants, such as FkNNC, CRNN, WRKNN,

31
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WLMRKNN, WDCCR, and DCCRC. Hypothetically, the multi-
commission scheme also obtains such advantages since it provides
more local decision-making. However, since MVMCNN utilizes a c-
means clustering method, it can be not only more sensitive to
some datasets but also more complex in computation. Hence,
two advanced procedures may be applied to solve both issues.
First, an advanced clustering method, such as hierarchical cluster-
ing, can be utilized to generate more stable clusters. Second, an
efficient method based on clustering and adaptive k values to find
the k-nearest neighbor as proposed (Gallego et al., 2022), can be
exploited to reduce those complexities. By utilizing those advanced
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Table 4
The highest Precision, Recall, and F1 Score (%) produced by KNN, LMPNN, BM-FKNN, and MVMCNN as well as the corresponding k in the parentheses for thirty UCI datasets.

Dataset Precision Recall F1 Score

KNN LMPNN BM-FKNN MVMCNN KNN LMPNN BM-FKNN MVMCNN KNN LMPNN BM-FKNN MVMCNN

Parkinsons 67.05 59.32 84.47 80.58 31.88 30.69 36.25 35.00 43.21 (14) 40.45 (12) 50.73 (6) 48.8 (10)
Glass* 91.00 93.56 90.92 94.34 90.29 92.14 89.57 92.14 90.64 (3) 92.85 (7) 90.24 (1) 93.23 (8)
Climate Model SC 50.00 36.11 41.25 40.07 27.17 25.43 25.87 26.30 35.21 (9) 29.85 (10) 31.8 (12) 31.76 (11)
Musk1 79.87 80.96 81.34 82.10 73.82 77.20 75.17 77.34 76.72 (4) 79.03 (4) 78.13 (2) 79.65 (4)
Transfusion 44.67 32.83 51.28 41.72 40.00 33.76 43.88 39.55 42.21 (12) 33.29 (14) 47.29 (4) 40.61 (12)
Wdbc 91.34 91.63 91.63 91.63 90.62 91.09 91.09 91.09 90.98 (7) 91.36 (6) 91.36 (11) 91.36 (7)
Plrx 45.89 29.12 40.94 52.92 26.80 22.60 24.40 29.00 33.84 (9) 25.45 (10) 30.58 (5) 37.47 (6)
Haberman 54.90 39.06 50.94 39.68 34.57 30.86 33.33 30.86 42.42 (3) 34.48 (6) 40.3 (5) 34.72 (7)
HillValley 58.53 65.34 63.49 73.59 57.79 60.81 58.45 63.58 58.16 (1) 62.99 (15) 60.87 (4) 68.22 (15)
Ionosphere 82.18 82.18 84.96 82.98 86.19 86.19 86.98 86.67 84.14 (2) 84.14 (14) 85.96 (2) 84.78 (15)
Wpbc 57.66 58.95 53.43 61.64 40.00 40.83 34.42 43.75 47.23 (2) 48.25 (14) 41.87 (2) 51.18 (13)
Sonar 66.03 67.51 66.86 67.58 33.40 35.67 33.81 35.67 44.36 (2) 46.68 (6) 44.91 (8) 46.69 (8)
Banknote 100.00 99.85 100.00 99.85 100.00 100.00 100.00 100.00 100.00 (2) 99.93 (1) 100.00 (3) 99.93 (1)
QSAR biodegradation 85.46 88.72 87.96 88.84 48.03 49.16 49.04 49.44 61.5 (3) 63.26 (15) 62.98 (5) 63.53 (15)
Musk2 43.65 44.81 34.09 46.74 63.52 63.87 51.52 66.86 51.74 (14) 52.67 (15) 41.03 (9) 55.02 (15)
Wine 52.54 53.66 54.10 56.45 64.58 68.75 68.75 72.92 57.94 (1) 60.27 (13) 60.55 (7) 63.64 (3)
Seed 83.78 81.69 85.71 82.99 88.57 82.86 94.29 87.14 86.11 (11) 82.27 (3) 89.8 (12) 85.02 (12)
Thyroid 55.50 57.73 61.46 58.88 73.51 74.17 78.15 76.82 63.25 (7) 64.93 (9) 68.8 (6) 66.67 (8)
Ecoli* 42.00 37.25 40.59 37.25 60.00 54.29 58.57 54.29 49.41 (6) 44.19 (12) 47.95 (4) 44.19 (11)
Robot Navigation 79.87 81.82 79.87 81.82 75.00 76.83 75.00 76.83 77.36 (1) 79.25 (3) 77.36 (1) 79.25 (3)
Wine Quality Red* 15.41 15.53 17.82 15.74 58.49 58.49 60.38 58.49 24.4 (12) 24.54 (14) 27.52 (7) 24.81 (14)
Page-Blocks 52.85 68.53 54.54 68.53 92.86 96.43 93.57 96.43 67.36 (4) 80.12 (9) 68.91 (6) 80.12 (9)
LandsatSatellite 45.10 51.26 56.72 51.26 92.65 97.44 98.40 97.44 60.67 (1) 67.18 (14) 71.96 (11) 67.18 (14)
CNAE 48.05 57.05 53.75 57.69 62.18 74.79 72.27 75.63 54.21 (14) 64.73 (15) 61.65 (13) 65.45 (15)
Letter* 76.45 86.49 86.10 89.95 81.15 83.77 83.51 89.01 78.73 (3) 85.11 (15) 84.78 (15) 89.47 (15)
Cardiotocography 39.22 46.28 41.34 46.28 75.47 86.79 79.25 86.79 51.61 (7) 60.37 (13) 54.33 (15) 60.37 (13)
PenDigits 96.93 98.77 98.46 98.77 95.83 98.67 96.77 98.67 96.37 (1) 98.72 (13) 97.61 (11) 98.72 (13)
OptDigits 90.91 92.78 93.06 92.78 90.42 97.65 99.46 97.65 90.66 (3) 95.15 (9) 96.15 (13) 95.15 (8)
Vowel 62.26 63.71 63.06 65.56 61.36 61.36 61.36 61.36 61.81 (1) 62.51 (15) 62.2 (2) 63.39 (8)
Libras Movement 75.00 81.01 83.90 81.01 73.04 77.91 80.35 77.91 74.01 (1) 79.43 (5) 82.08 (13) 79.43 (5)

Friedman Mean Rank 3.20 2.47 2.20 1.63 2.93 2.17 2.13 1.60 3.17 2.43 2.23 1.70
Rank 4 3 2 1 4 3 2 1 4 3 2 1
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procedures, MVMCNN can be improved to obtain a low mean error
rate and low computational complexity. Moreover, it can be used
to develop various real-world applications based on detection,
classification, recognition, and others.

5. Conclusion

A novel KNN variant named MVMCNN has been successfully
implemented. It is inspired by both the decision-making in a par-
liament with some commissions. As an early model, it was devel-
oped using a base model of LMPNN. However, unlike LMPNN, it
makes a decision based on the total distances from multi k nearest
neighbors (voters) from each cluster (commission) instead of each
class. Evaluation based on a 10-FCV using 30 UCI datasets shows
that it outperforms KNN, LMPNN, and BM-FKNN classifiers. More-
over, a detailed investigation informs that it is also more robust,
with a lower sensitivity of k, than the three competitors. It can
solve some datasets with outliers because the c-means clustering
is exploited to split them into small clusters (commissions). How-
ever, for some datasets with high-density points in each class,
MVMCNN performs the same as the LMPNN since it does not split
them into some clusters. In other words, it is enforced to use the
original (single-commission) LMPNN for datasets with dense
classes. Therefore, it can be concluded that MVMCNN guarantees
to perform better than (or at least equal to) LMPNN. Compared
to the single-voter models: KNN and BM-FKNN, the proposed
MVMCNN also gives lower mean error rates as well as higher Pre-
cision, Recall, and F1 Score. This result shows that the multi-voter
model provides a better decision than the single-voter ones.

Nevertheless, this study has a limitation since the proposed
MVMCNN is evaluated and compared to the competitors only
based on the mean error rate, which is a general performance met-
ric. It does not comprehensively give detailed investigations for the
specific datasets that are imbalanced-classes, sensitive, and give a
high fatality, such as in medical and security applications. For
instance, an application of Covid-19 detection needs to be evalu-
ated in more detail based in a confusion matrix since the dataset
is imbalance, and false negative or false positive gives a fatal
impact.

In the future, it will be enhanced by leveraging advanced base
models of nearest neighbors, such as FkNNC, CRNN, WRKNN,
WLMRKNN, WDCCR, DCCRC, and BM-FKNN, to obtain much better
performance in terms of mean error rate and sensitivity of k.
Besides, a comprehensive performance analysis using the confu-
sion matrix will be utilized to provide detailed investigations,
especially for imbalanced-class datasets with high fatality.
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