BAB 3 METODE PENELITIAN

Penelitian ini akan merancang antena mikrostrip untuk diterapkan sebagai antena penerima TV. Terdapat beberapa harapan dalam perancangan antena, diantaranya adalah penentuan persyaratan antena yang dibutuhkan, menentukan material substrat, perhitungan ukuran antena, serta penentuan metode yang digunakan dalam perancangan antena. Tinjauan Pustaka mengenai pengguaan metode diambil dari buku referensi dan jurnal yang telah dipublikasikan. Dari hasil penelitian diharapakan parameter antena yang dihasilkan memnuhi persyaratan yang ditentukan.

Pada tahap perancangan desain antena akan disimulasikan menggunakan *software* Antenna Magus dan CST Studio Suite 2018. Tujuan simulasi pada tahap perancangan adalah untuk melihat gambaran bagaimana karakteristik atau kinerja antena yang dihasilkan. Pada simulasi perancangan awal antena, parameter yang dihasilkan tidak akan langsung mendapatkan karakteristik antena yang sesuai karena antena perlu di iterasi untuk mendapatkan fungsi kerja yang sesuai. Pada bab 3 ini akan dijelaskan bagaimana tahapan awal perancangan antena sampai dengan proses simulasi dengan melakukan beberapa kali proses iterasi untuk menghasilkan desain antena yang paling sesuai untuk mendukung fungsi kerja yang optimal.

3.1 ALAT DAN BAHAN YANG DIGUNAKAN

Penelitian ini dilakukan dengan menggunakan beberapa alat untuk membantu dalam proses penelitian ini, antara lain :

1. Software CST Studio Suite 2018.

Simulator CST Studio Suite 2018 merupakan *software* simulator untuk perancangan antena menggunakan metode komputasi *Finite Element Methode* (FEM) yang dapat melakukan suatu pengamatan keseluruhan disertai perancangan model antena. CST Studio Suite 2018 merupakan *software* yang berfungsi untuk melakukan perancangan dan sekaligus melakukan simulasi hasil rancangan antena.

2. Antena Magus 2018

Perangkat lunak ini merupakan *software simulator* untuk membantu mempercepat proses desain antena. Pada Antena Magus terdapat berbagai *template* model antena yang dapat dipilih sesuai karakteristik antena yang akan dibuat. Model antena yang telah dibuat dapat diekspor ke CST Studio untuk dilakukan optimasi lebih lanjut.

3. Laptop / PC

Dalam melakukan simulasi menggunakan *software* CST Studio Suite dan Antena Magus maka diperlukan laptop/PC dengan prosesor Intel *core i7* dengan RAM 4GB.

3.2 ALUR PENELITIAN

Penelitian dilakukan dalam beberapa tahap yaitu :

- Tahap studi literatur dilakukan kajian literatur guna mendorong teori perancangan antena yang akan dibuat baik menggunakan buku referensi maupun menggunakan jurnal-jurnal yang telah dipublikasi.
- Menentukan persyaratan rancangan antena yang akan dirancang, dimana persyaratan ini meliputi parameter yang sesuai dengan penerapan antena, seperti parameter frekuensi, *return loss, impedance,* VSWR, pola radiasi, polarisasi, *gain* dan *bandwith*.
- 3. Menentukan substrat antena yang akan dilakukan dalam perancangan. Pada penelitian ini substrat yang digunakan adalah FR-4 epoxy dengan nilai konstanta dielektrik 4,3 ketebalan substrat h = 1,6 mm , loss tangen 0,0265 untuk mendukung frekuensi kerja yang diharapkan.
- 4. Melakukan perancangan awal desain antena menggunakan *software* Antena Magus 2018 untuk mendapatkan *template*

desain yang paling sesuai dengan karakteristik antena yang akan dibuat.

- Melakukukan iterasi dan penyesuaian desain menggunakan software CST Studio Suite 2018. Penyesuaian dilakukan bertahap agar antena dapat bekerja pada frekuensi yang ditentukan.
- 6. Melakukan fabrikasi desain yang telah dibuat dan mengimplementasikan hasil fabrikasi sesuai dengan aplikasinya.

Gambar 3.2. 1 Flowchart Perancangan Antena Mikrostrip Penerima TV

3.3 PERSYARATAN RANCANGAN ANTENA

Ketentuan karakteristik antena mikrostrip dapat dilihat pada tabel 3..3.1 berikut :

Parameter	Persyaratan antena
Frekuensi kerja	628 MHz, Rentang frekuensi 478 -
	806 MHz
Impedansi terminal	75 Ohm ± 5 Ohm
VSWR	≤ 2
Gain	\geq 4 dB
Bandwitdth	≥ 100 MHz
Return Loss	\leq -10 dB
Polarisasi	Linear
Pola Radiasi	Omnidirectional
Lebar Substrat	250 mm
Panjang Substrat	220 mm

Tabel 3.3. 1 Persyaratan Rancangan Antena

3.4 MENENTUKAN JENIS SUBSTRAT

Konstanta dielektrik dan ketebalan substrat dapat mempengaruhi frekuensi kerja dari antena, bandwidth, dan efisiensi antena yang dibuat. Pada penelitian ini, jenis substrat dan patch yang digunakan ditunjukkan pada tabel 3.3.2 berikut :

Tabel 3.3. 2 Karakteristik Patch

Jenis substrat	FR-4
Konstanta dielektrik	4,3
Tebal Substrat	1,6 mm
Jenis Patch	Copper
Tebal Patch	0,035 mm

3.5 PERANCANGAN DESAIN AWAL ANTENA MENGGUNAKAN ANTENNA MAGUS 2018

Proses perancangan desain awal antena mikrostrip Yagi-Uda dilakukan menggunakan *software* Antenna Magus. Dalam penelitian ini frekuensi kerja yang digunakan adalah 628 MHz. Tahap-tahap untuk merancang desain awal antena adalah sebagai berikut.

1. Buka software Antenna Magus 2018 dan klik "Find a new Antenna".

∾∥⊽ File Home Libra	aries Toolbox	,	Antenna Magus 2018.0 (Professional)		= ð ×
Quick Start		My C	Collection		My Custom Templates
Help and Getting Started Export Templates Finport Templates	C Find a	new Antenna	Add a new Array	Show Compare Window	Add a new Custom Template
💰 Backup	My Specifications	My Antennas			
S Check for Updates	<empty specification=""></empty>	Antenna 1			
💒 Suggest Feature	Public broadcast (UHF Device antenna) 1	Antenna 2			
X Settings	Public broadcast (UHF	Antenna 3			
Exit	Device antenna) 2 Public broadcast (UHF Device antenna) 3	Antenna 4 Antenna 5			No Custom Template Items
	Public broadcast (UHF Device antenna) 4		No Array Items	No Compare Sets	
	Public broadcast (UHF Device antenna) 5				
	Public broadcast (UHF Device antenna) 6				Recent Backups
	Public broadcast (UHF Device antenna) 7				necent buenaps
	Public broadcast (UHF Device antenna) 8				
	Public broadcast (UHF Device antenna) 9				No Recent Backups
	Ant	ennac	Arrays	Compare Sets	

Gambar 3.5. 1 Tampilan Awal Software Antenna Magus 2018

Kemudian akan terbuka *pop up* pilihan spesifikasi seperti pada Gambar
 3.5.2. Pilih "*Public Broadcast*".

ool∥⊽ File Home Libraries Toolbox		Antenna Magus 2018.0	(Professional)				- 8 ×
Eine Design Array Synthesis Browser Browser							
Magus Reference							
All Favourites Horn Antennas Pl	Specification Chooser			×	ansitions	Other Custom Templates	
Specification				()			
Public broadcast (UHF Device antenna) 9	Aeronautical	ISM	Inmarsat	Nautical	tated 2-	M-by-N rectangular	
Find	Public Broadcast	Rader Bands	Smart Devices and Mobile Comms	Custom Specification	Vivaldi	patch array with corp	
2 ¹⁷ Suggest Antenna							
Collection						Restore Collection	X Delete
						Update notification There may be an update available Do not show again	×

Gambar 3.5. 2 Pop Up Pilihan Spesifikasi Antena.

3. Pilih *"Device"* karena pada penelitian ini akan dibuat antena pada sisi penerima.

Gambar 3.5. 3 Pilihan Spesifikasi Antena.

4. Pilih "*Public Broadcast (UHF Device Antenna*)" sesuai dengan spesifikasi frekuensi antena yang akan dibuat yaitu pada rentang frekuensi UHF.

es =		Antenna Magus 2018.0 (Professional)	- 8 ×
Design Array Design Array Magus			
All Favourites Horn Ante	nnas Planar Antennas Wire Ante	nnas Reflector Antennas Dielectric Antennas Arrays Transitions	Other Custom Templates
Specification	1 templates matched 3 / 3	keywords	â
Public broadcast (VHF Device antenna) 1	Specification Chooser	×	
Find	Specifications	est Device	
Enter Keywords e.g. high gain e.g. GSM	Name	About	
Current Keyword List	Public broadcast (FM Device antenna)	FM, in this instance, refers to the frequency band 88 - 108 MHz used for FM (Frequency Modulation) radio broadcasting and reception. This specification is set up to help find toxical FM antennas for devices (receiver antenna).	
Dual-reflector	Public broadcast (VHF Device antenna)	VHF, in this instance, refers to the frequency band 174 - 216 MHz used for television broadcast and reception in the VHF (Very High Frequency) band. This specification is set up to help find typical VHF device antennas (transmitter antenna).	
Microstrip Moderate bandwidth	Public broadcast (UHF Device antenna)	UHF, in this instance, refers to the frequency band 470 - 806 MHz used for television broadcast and reception in the UHF (Ultra High Frequency) band. This specification is set up to help find typical UHF device antennas (transmitter antenna).	Yagi-Uda dipole array with folded-dipole dr
Can't find the antenne you are looking for? Click here to suggest an antenna.			
Collection			🔹 🕨 🚨 Restore Collection 🛛 🗶 Delete 💌
			Update notification * There may be an update available.
		Entry Carrier	3/20/2022

Gambar 3.5. 4 Pilihan Spesifikasi Antena

5. Setelah selesai melakukan pilihan spesifikasi awal, maka akan muncul pilihan template antena. Selanjutnya adalah memilih spesifikasi sesuai dengan karakteristik yang akan dibuat. Pilihan spesifikasi dapat dipilih pada bagian kiri dan nantinya *template* antena akan muncul sesuai dengan spesifikasi yang diminta.

Gambar 3.5. 5 Tampilan Pilihan Template Antena.

Dapat dilihat pada Gambar 3.5.5, spesifikasi yang digunakan adalah antena untuk penggunaan TV dan radio, berjenis mikrostrip, dan bekerja pada frekuensi UHF. Pilihan antena yang paling sesuai dengan spesifikasi tersebut akan ditampilkan pada posisi teratas.

6. Setelah itu pilih template antena yang paling sesuai dengan klik 2 kali pada gambar antena. Pada penelitian ini digunakan antena mikrostrip *Printed Microstrip-fed Yagi-Uda Dipole Array.*

Gambar 3.5. 6 Antena Mikrostrip Yagi-Uda

7. Kemudian akan muncul desain antena sesuai dengan spesifikasi yang diminta lengkap dengan ukuran tiap elemen.

Gambar 3.5. 7 Desain Awal Antena Yagi-Uda

8. Untuk mendapatkan hasil parameter dari desain awal ini, klik "*Estimate Performance*" pada Parameter bar. Parameter akan muncul setelah perhitungan simulasi selesai.

Gambar 3.5. 8 Hasil Simulasi Desain Awal Antena Yagi-Uda

9. Jika desain awal belum sesuai dengan karakteristik yang diinginkan, dapat dilakukan iterasi dengan cara klik pada *Design Objectives*, klik *New Design* maka akan muncul desain baru dibawahnya.

Specification		6	1
Public broadcast (UHF Device antenna) :	10	
Prototype Desi	gns and Tweaks		
Public broade antenna) 10 Design 1	ast (UHF Device	⊘ ∎i ⊘ ∎	
			▼
🔻 Design Obje	ctives - Public bro	oadcast (UH 👔	
Selected De choose:	sign is not editable.	Please 🗙	
📴 Edit Spe	cification 🛛 🤻 New	Design	
Radiation Patter			
G			
	a		▼

Gambar 3.5. 9 Membuat Desain Antena Baru

10. Setelah itu klik pada *Design 1* untuk mengubah nilai dan ukuran elemennya. Pada penelitian ini menggunakan frekuensi tengah 642 MHz dan menggunakan FR-4 sebagai bahan substratnya.

Untuk menggunakan substrat FR-4 dapat dilakukan menggunakan fitur pencarian material.

Re Libraries Toolbox	Chart To Format	5 8	Antenna Magus	2018.0 (Professiona	0					- 5 ×
Find Design Array Synthesis Browser Browser	how	Edit New	Design Estimate	lew Delete	Export	Export	Co Export			
Magus Reference Co	ompare Re	ecent substrates						*		
	- N	Manufacturer	Name		¢r	tanδ	Height			
· · · · · · · · · · · · · · · · · · ·		Generic	FR4		4.35	-	3.4 mm			
Specification	8 -					-			11 E 🗹	Impedance vs Frequency
Public broadcast (UHE Device antenna) 10					4.3	0	1.6 mm			VSWR
										6
Prototype Designs and Tweaks					3		3.859 mm	UE		
Public broadcast (UHF Device antenna) 10	• 🗖 🗄				1		3 342 mm			3
Decian 1					1		3.342 1111			2
Materials/Physical Properties 1										1 550 600 650 700 750
N 5		Open library								
		**			-					Far Field vs Angle @ f0 (638 MHz)
Substrate		1 520	540 560 580	600 620 Frequ	640 660 ency (MHz)	680	700 720	740	760	Gain (Total - normalised)
Name	510					Public b	condenet.			30° 330°
Manufacturer						(UHF De	vice			
Relative Permittivity	jĮ					antenna) 10			120° 22/0° 120° 240°
Substrate m						Po	rt 1			130- 1809 140-
Thickness	-									3D Far Field @ f0

Gambar 3.5. 10 Pengaturan Frekuensi dan Jenis Substrat

11. Setelah itu klik desain pada bagian bawah untuk mendapatkan ukuran tiap elemen antena.

Substrate	
Name	FR4
Manufacturer	Generic
Relative Permittivity	4.35
Substrate Thickness	3.4 mm
🎕 New Design	💡 Design

Gambar 3.5. 11 Proses Desain

12. Gambar desain akan muncul dilengkapi ukuran tiap elemennya.

Gambar 3.5. 12 Desain Antena dengan 3 Direktor

Jumlah elemen direktor dapat ditentukan sesuai dengan spesifikasi yang diinginkan dengan mengubah nilai N *(Number of Elements)* pada tab Parameters. Pada penelitian ini menggunakan 3 buah direktor dengan 2 elemen lainnya adalah reflektor dan *Driven element* sehingga pada nilai N diisikan dengan nilai 5.

 Agar dapat menghasilkan hasil yang sesuai dengan cepat dan tepat, dapat dilakukan iterasi sesuai dengan rekomendasi yang tertera pada tab *Information*.

Gambar 3.5. 13 Design Guidline Antena Mikrostrip Yagi-Uda

14. Setelah iterasi desain selesai, dilakukan *Estimate Performance* seperti langkah sebelumnya. Tunggu hingga proses perhitungan selesai. Data parameter akan ditampilkan bersamaan dengan hasil parameter pada desain sebelumnya sehingga dapat dianalisis perubahan dan untuk menentukan bagian mana yang akan diubah.

Gambar 3.5. 14 Parameter Hasil Simulasi

Hasil VSWR pada desain awal yang ditampilkan dengan garis biru, menunjukkan rentang VSWR ≤ 2 pada rentang frekuensi 585-665 MHz dan gain sebesar 9,03 dB.

Hasil VSWR pada desain 1 yang ditampilkan dengan garis orange menunjukkan VSWR ≤ 2 pada rentang frekuensi 560 - 660 MHz dengan gain 9.51 dB.

Pada penelitian ini Desain 1 diambil sebagai acuan untuk kemudian di eksport dan dilakukan iterasi lebih lanjut menggunakan *software* CST Studio 2018.

3.6 PERANCANGAN ANTENA MIKROSTRIP YAGI-UDA MENGGUNAKAN CST STUDIO 2018

Dalam perancangan desain antena menggunakan *software* CST Studio 2018 ini, file desain antena didapat dari perancangan awal desain antena yang dilakukan di *software* Antenna Magus 2018 . File desain tersebut kemudian dieksport ke CST Studio 2018 dan dilakukan iterasi lanjutan.

3.6.1 Desain Antena Mikrostrip Yagi-Uda Sebelum Iterasi

(a) Tampak Atas

(b) Tampak Bawah

Gambar 3.6. 1 Desain Awal Antena Mikrostrip Yagi-Uda

Gambar diatas adalah desain awal dari file rancangan Antena Magus yang dieksport menjadi file CST Studio 2018. Pada desain awal ini, jenis elemen yang digunakan masih menggunakan jenis elemen sesuai proses perhitungan Antenna Magus dengan jenis substrat menggunakan PEC dan ketebalan 3.4 mm.

Berikut adalah dimensi antena mikrostrip Yagi-Uda sebelum dilakukan iterasi :

Tabel 3.6. 1 Dimensi Antena Mikrostrip	Yagi-Uda Sebelum Iterasi
--	--------------------------

Parameter	Keterangan	Nilai
Lde	Panjang Driven element	184,8 mm
Lr	Panjang reflektor	359,4 mm
We	Lebar elemen	18,48 mm

Wf	Lebar Feedline	6,556 mm
Lf	Panjang feedline	323,4 mm
Hs	Ketebalan substrat	3,4 mm
L	Panjang substrat	748,9 mm
W	Lebar substrat	554,3 mm
Ld1	Panjang direktor 1	150,7 mm
Ld2	Panjang direktor 2	148,9 mm
Ld3	Panjang direktor 3	147,1 mm

3.6.2 Desain Antena Mikrostrip Yagi-Uda Setelah Iterasi

Setelah selesai dilakukan simulasi pada desain awal, selanjutnya adalah melakukan iterasi pada CST Studio 2018. Pada iterasi lanjutan ini, dilakukan pengubahan jenis elemen antena dan pengubahan dimensi antena. Substrat PEC diubah menggunakan FR-4 dengan ketebalan 1.6 mm dan dimensi antena berubah menjadi 1/3 dari dimensi awal antena. Pengubahan ini tentu akan menimbulkan perubahan pada hasil parameter yang didapat.

(a) Tampak Atas

(b) Tampak Bawah

Gambar 3.6. 2 Desain Antena Mikrostrip Yagi-Uda Setelah Iterasi

Pada Tabel 3.6. 2 dibawah adalah dimensi antena microstrip Yagi-Uda setelah dilakukan iterasi.

Parameter	Keterangan	Nilai
Lde	Panjang Driven element	196,6 mm
Lr	Panjang reflektor	99,8 mm
We	Lebar elemen	15,1 mm
Wf	Lebar Feedline	4,8 mm
Lf	Panjang <i>feedline</i>	34,4 mm
Hs	Ketebalan substrat	1,6 mm
L	Panjang substrat	222,9 mm
W	Lebar substrat	236,7 mm
Ld1	Panjang direktor 1	51,4 mm
Ld2	Panjang direktor 2	83,0 mm
Ld3	Panjang direktor 3	139,9 mm

Tabel 3.6. 2 Dimensi Antena Setelah Iterasi