BAB 3

METODE PENELITIAN

3.1 ALAT YANG DIGUNAKAN

3.1.1 Alat Penelitian

Adapun alat yang digunakan dalam penelitian ini:

Tabel 3.1 Alat Fabrikasi dan Karakterisasi

	Alat Fabrikasi	
No	Nama Alat	Keterangan
1.	Electrospinning	Satu set alat electrospinning
	Satu set alat electrospinning,	yang berfungsi sebagai alat
	Laboratorium Fisika dan	fabrikasi membran lapis tipis
	Instrumentasi,	nanofiber
	Institut Teknologi Telkom	
	Purwokerto	
2.	Mikroskop Optik Oregon	Sebagai alat untuk melakukan
	Laboratorium Fisika dan	pengamatan fiber membran tipis
	Instrumentasi,	hasil electrospinning
	Institut Teknologi Telkom	
	Purwokerto	
2	C	Colored and
3.	Spuit 5 ml	Sebagai alat untuk
		menyuntikkan larutan polimer
		atau campuran polimer ke dalam
		sistem electrospinning dan
		mengontrol aliran larutan yang
		keluar

Tabel 3.1 Alat Fabrikasi dan Karakterisasi (lanjutan)

	Alat Fabrikasi		
No	Nama Alat	Keterangan	
4.	Neraca Digital Ohaus, Pioneer,	Perangkat yang digunakan untuk	
	Laboratorium Basic and	mengukur massa atau berat	
	Science,	suatu objek dengan	
	Institut Teknologi Telkom	menggunakan sensor dan	
	Purwokerto	teknologi digital untuk	
		menampilkan hasil pengukuran	
5.	Gelas Bekker 100 ml	Sebuah alat laboratorium yang	
	Iwaki, Asahi Glass	digunakan sebagai wadah	
		larutan atau cairan yang akan	
		diproduksi	
6.	Gelas Ukur 10 ml	Sebuah alat laboratorium yang	
	Iwaki	digunakan untuk mengukur	
		cairan	
7.	Pipet	Alat laboratorium yang	
		digunakan untuk mengukur dan	
		mentransfer volume cairan	
		secara tepat	
8.	Hotplate Magnetic Stirrer	Alat untuk memanaskan sampel	
	Hotplate Stirrer Thermo	cair atau padat dalam wadah	
	Scientific Cimarec 2	yang diletakkan di atasnya	
	sp88857105,		
	Laboratorium Basic and		
	Science,		
	Institut Teknologi Telkom		
	Purwokerto		
9.	Magnetic Stirrer	Alat untuk mengaduk larutan	
	Magnetic stirrer bar 3 cm tipe	atau campuran reaksi secara	
	С	homogen. Magnet di dalam	
		hotplate diputar oleh medan	

Tabel 3.1 Alat Fabrikasi dan Karakterisasi (lanjutan)

	Alat Fabrikasi		
No	Nama Alat	Keterangan	
		magnet yang dihasilkan oleh	
		mesin, yang menggerakkan	
		pengaduk magnetik yang	
		terletak dalam wadah cairan di	
		atasnya	
10.	Aluminium Foil	Sebagai penutup gelas bekker	
		yang berisi cairan atau larutan	
		yang sedang diaduk dan	
		dipanaskan di atas hotplate	
11.	Viskometer	Alat untuk mengukur viskositas	
	Brookfield Ametek,	suatu cairan	
	Laboratorium Fisika dan		
	Instrumentasi,		
	Institut Teknologi Telkom		
	Purwokerto		
12.	Sarung Tangan Latex Medical	Alat untuk melindungi tangan	
	Latex Nehealth,	dari paparan cairan tubuh, bahan	
	Laboratorium Basic and	kimia, dan infeksi	
	Science,		
	Institut Teknologi Telkom		
	Purwokerto		
13.	Spatula	Sebagai pengaduk manual	
		larutan atau cairan	
	Alat Karak	terisasi	
No	Nama Alat	Keterangan	
1.	Fourier Transform Infra Red	Sebagai alat untuk melakukan	
	(FTIR)	pengujian FTIR	
	Laboratorium Terpadu,		

Tabel 3.1 Alat Fabrikasi dan Karakterisasi (lanjutan)

Alat Karakterisasi		
No	Nama Alat	Keterangan
	Universitas Diponegoro,	
	Semarang	
2.	Scanning Electron Microscope	Sebagai alat untuk melakukan
	(SEM)	pengujian SEM
	Laboratorium Terpadu,	
	Universitas Diponegoro,	
	Semarang	
3.	Neraca digital Ohaus, Pioneer,	Sebagai alat untuk melakukan
	Laboratorium Basic and	pengujian degradabilitas
	Science,	
	Institut Teknologi Telkom	
	Purwokerto	

Penelitian ini menggunakan metode *electrospinning* yang menghasilkan serat yang sangat halus dengan diameter mulai dari nanometer hingga mikrometer. Bagian-bagian dari *electrospinning*, seperti, *spinneret*, pompa infus, *vacuum chamber*, dan listrik yang tinggi. Komponen dari teknik ini meliputi elektroda dan kolektor. Elektroda ini terdiri dari jarum atau tabung logam yang bermuatan listrik. Elektroda ini juga terhubung ke sumber tegangan yang menciptakan medan listrik di sekitarnya. Sedangkan kolektor, permukaan yang digunakan untuk mengumpulkan serat yang dihasilkan. Kolektor dapat berupa pelat datar, drum yang berputar, atau elektroda tambahan yang berfungsi sebagai target untuk menangkap serat yang keluar.

Proses *electrospinning* dimulai dengan injeksi larutan polimer melalui jarum atau saluran yang terhubung ke elektroda bermuatan. Medan listrik yang diciptakan oleh elektroda menyebabkan muatan pada permukaan larutan yang menciptakan gaya elektrostatik. Gaya ini melebihi tegangan permukaan larutan dan menyebabkan larutan mengalir dari jarum dalam bentuk pancaran cairan. Jet cair kemudian mengering di udara dan serat yang sangat tipis terbentuk. Serat ini

kemudian dikumpulkan pada permukaan koleksi yang sesuai dengan bentuk yang diinginkan. Setelah terkumpul, serat ini dapat digunakan sebagai bahan dasar untuk berbagai aplikasi seperti bahan *filter*, pemisah, konduktor listrik, aditif biomedis, dan lain sebagainya. Teknologi *electrospinning* memiliki keuntungan, yaitu, kemampuannya untuk menghasilkan serat yang sangat halus dengan diameter dalam kisaran nanometer, yang sulit dicapai dengan metode produksi serat konvensional. Selain itu, teknik ini juga memungkinkan untuk mengontrol morfologi, ukuran, dan struktur serat dengan mengubah parameter seperti komposisi larutan, tegangan, laju aliran, dan jarak elektroda-kolektor.

3.1.2 Bahan Penelitian

Adapun bahan yang digunakan dalam penelitian ini:

Tabel 3.2 Bahan Penelitian

No	Nama Bahan	Keterangan
1.	Polylactic Acid (PLA)	Sebagai bahan fabrikasi
		membran vascular patch
2.	Kolagen	Sebagai bahan fabrikasi
	Fish Collagen	membran vascular patch
3.	Polyvinyl Alcohol (PVA)	Sebagai guest polymer untuk
		fabrikasi membran <i>vascular</i>
		patch
4.	Aseton	Sebagai pelarut bahan PLA
		untuk trial and error larutan
5.	Alkohol	Sebagai pelarut bahan PLA
		untuk trial and error larutan
6.	Etil Asetat	Sebagai campuran pelarut bahan
		PLA
7.	Dimetil Sulfoksida (DMSO)	Sebagai campuran pelarut bahan
		PLA

Tabel 3.2 Bahan Penelitian (lanjutan)

No	Nama Bahan	Keterangan
8.	Methanol	Sebagai pelarut bahan PLA
	Laboratorium Basic and	untuk trial and error larutan
	Science,	
	Institut Teknologi Telkom	
	Purwokerto	
9.	Asam Asetat	Sebagai campuran pelarut bahan
	Asam asetat glasial 400 ml,	kolagen
	Laboratorium Basic and	
	Science,	
	Institut Teknologi Telkom	
	Purwokerto	
10.	Aquades	Sebagai pelarut bahan PVA
	Laboratorium Basic and	
	Science,	
	Institut Teknologi Telkom	
	Purwokerto	

Dalam *electrospinning*, melibatkan beberapa komponen, salah satunya larutan polimer. Larutan yang mengandung polimer atau campuran polimer yang dilarutkan dalam pelarut tertentu. Dalam beberapa kasus, campuran pelarut dapat digunakan untuk mencapai sifat yang diinginkan pada serat yang dihasilkan. Bahan tambahan atau pelarut yang digunakan dalam fabrikasi membran *vascular patch* ini ada aseton, alkohol, asam asetat, air, dan aquades sebagai eksperimen preparasi larutan. Bahan atau pelarut tersebut digunakan untuk campuran pada bahan utama, baik PLA maupun kolagen. Tujuan pencampuran pelarut dan polimer tersebut adalah supaya larutan yang dibuat dapat menghasilkan homogenitas dan viskositas yang bagus sehingga dapat dilanjutkan pada tahap selanjutnya, yaitu proses *electrospinning* dan ketika diamati dengan mikroskop hasilnya adalah *fiber*.

3.2 ALUR PENELITIAN

Tahapan pelaksanaan penelitian fabrikasi membran *vascular patch* adalah sebagai berikut:

3.2.1 Preparasi Larutan

Preparasi larutan dilakukan dengan cara mencampurkan zat dengan pelarutnya dengan percobaan berulang kali hingga mendapatkan hasil larutan homogen.

- 1. PLA dilarutkan dengan Aseton
- 2. PLA dilarutkan dengan Alkohol 70%
- 3. PLA dilarutkan dengan Methanol
- 4. PLA dilarutkan dengan Etil Asetat dan Dimetil Sulfoksida (DMSO)
- 5. Kolagen dilarutkan dengan air
- 6. Kolagen dilarutkan dengan asam asetat
- 7. Kolagen dilarutkan dengan aquades
- 8. PVA dilarutkan dengan aquades

Tahap pembuatan larutan adalah tahap yang memiliki tingkat kesulitan yang cukup tinggi. Eksperimen awal untuk melarutkan PLA, yaitu PLA dilarutkan dengan aseton menghasilkan larutan yang encer, viskositas kurang, dan belum homogen. Kedua, PLA dilarutkan dengan alkohol menghasilkan larutan yang encer, viskositas kurang, dan belum homogen. Ketiga, PLA dilarutkan dengan methanol menghasilkan larutan yang menggumpal dan lama-lama menguap. Keempat, PLA dilarutkan dengan etil asetat dan dimetil sulfoksida (DMSO) dengan perbandingan 1:1 dan distir selama 24 jam pada suhu ruang [53].

Eksperimen awal untuk melarutkan kolagen, yaitu kolagen dengan air menghasilkan larutan yang homogen tetapi viskositas kurang. Kedua, kolagen dilarutkan dengan aquades menghasilkan larutan yang homogen tetapi viskositas kurang. Ketiga, kolagen dilarutkan dengan asam asetat menghasilkan larutan yang homogen dan viskositas bagus. Kolagen sebanyak 6% dilarutkan dengan asam asetat 100%, hasil pengukuran viskositas di angka 1020 CP menandakan hasil yang bagus untuk dilanjutkan ke tahap *electrospinning*. Namun, dengan jumlah seperti itu masih belum bisa menghasilkan membran yang baik. Kolagen

diturunkan menjadi 3% diproduksi dengan cara menimbang kolagen sebanyak 0,9 gram dan dilarutkan dalam 30 ml aquades dan 0,45 ml asam asetat yang dimasukkan secara bertahap. Larutan tersebut ditir dengan kecepatan 310 RPM pada suhu 40°C, apabila sudah homogen dimasukkan dalam vial [45].

Pada tahap pembuatan larutan PVA dilakukan dua kali percobaan untuk mengetahui yang terbaik. Percobaan pertama yaitu membuat PVA 10% dengan cara menimbang 3 gram PVA dan memasukkan 30 ml aquades pada gelas ukur. Aquades tersebut dimasukkan ke dalam gelas bekker untuk distir pada suhu 90 °C sampai mendidih, apabila sudah mendidih PVA dimasukkan secara perlahan agar tidak terjadi penggumpalan. Pengadukan dilakukan dengan kecepatan stir kurang dari 100 RPM selama larutan homogen atau selama 2-3 jam. Setelah selesai, larutan disimpan dalam vial dan terjaga dari udara. Percobaan kedua yaitu membuat PVA 12% dengan cara menimbang 3,6 gram PVA dan memasukkan 26,4 ml aquades pada gelas [35]. Proses yang dilakukan sama seperti pembuatan larutan yang sebelumnya.

3.2.2 Pengukuran Viskositas

Pengukuran dilakukan dengan cara menuangkan larutan PVA 10% dan 12% yang sudah jadi pada gelas ukur 10 ml dengan volume larutan 9-10 ml agar bisa diukur dengan *viscometer*. Viskositas atau kekentalan suatu larutan ini dapat mempengaruhi proses dan hasil *electrospinning*. Apabila viskositas larutan rendah akan menyebabkan hasil *electrospinning* terdapat *bead*. Apabila viskositas larutan terlalu tinggi juga tidak baik dalam proses *electrospinning* karena larutan akan sulit untuk melewati jarum suntik sehingga akan sulit juga ditarik menuju *collector* dan *fiber* menjadi sulit untuk terbentuk [54].

3.2.3 Proses *Electrospinning*

Dari hasil pengukuran viskositas, apabila sudah baik dan sesuai dengan yang diharapkan, maka lanjut pada tahap *electrospinning* dengan *spindle* dan pengaturan tegangan. Pada tahap ini mulai dari injeksi larutan polimer melalui *spuit* atau jarum suntik lalu dipasang pada sistem *electrospinning*. Parameter-parameter dalam *electrospinning*, seperti, jarak jarum dengan *collector*, tegangan

listrik, kecepatan aliran larutan, dan suhu diatur sesuai dengan kebutuhan. Pengaturan pada alat, yaitu tegangan tinggi 12-20 kV diterapkan ke jarum, jarak 13 cm, dan lama waktu *running* 1 menit jika ingin melakukan pengamatan mikroskop, 5 menit untuk dilihat apakah bisa membentuk serat tipis, dan 1 jam untuk persiapan sampel uji karena memiliki ketebalan yang cukup. Tegangan listrik untuk menciptakan medan listrik yang nantinya membuat larutan ditarik keluar dari jarum. Larutan yang berhasil ditarik keluar tersebut akan membentuk serat-serat tipis.

3.2.4 Pengamatan Mikroskop

Proses pengamatan mikroskop membutuhkan hasil membran yang tipis dari hasil proses *electrospinning*. Proses *electrospinning* dilakukan selama 1 menit untuk mendapatkan hasil membran tipis pada kaca preparat yang ditempelkan pada aluminium foil. Hasil serat-serat yang telah terkumpul selama proses *electrospinning* pada kaca preparat dilepaskan dari aluminium foil untuk diamati menggunakan mikroskop dengan harapan hasilnya adalah *fiber*. Hasil *fiber* dapat terlihat pada mikroskop dan ditandai dengan adanya semacam benang yang tidak terputus. Selain itu, dapat terlihat adanya *bead* pada hasil mikroskop yang menandakan seberapa viskos larutan tersebut.

Gambar 3.1 Mikroskop Optik Oregon

3.2.5 Karakterisasi Membran Fiber

Tahap terakhir, yaitu, pengujian dan verifikasi yang dilakukan terhadap membran *vascular patch* yang telah dibuat. Karakterisasi yang dilakukan yaitu, FTIR, degradabilitas, dan SEM.

1. Fourier Transform Infra Red (FTIR)

FTIR untuk menganalisis komposisi material yang digunakan dalam fabrikasi membran *vascular patch*. Alat yang digunakan adalah Nicolet Avatar 360 IR di Laboratorium Terpadu Universitas Diponegoro, Semarang. Data hasil uji FTIR diolah menggunakan *Excel* dan *Origin* untuk dibandingkan dengan data serapan yang ada dalam jurnal referensi.

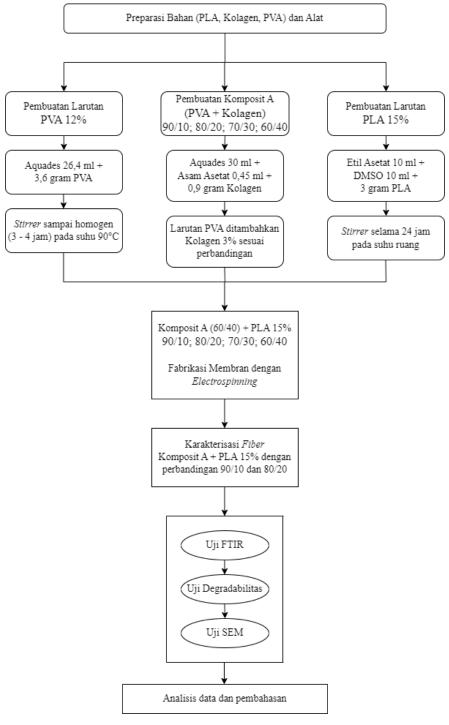
Gambar 3.2 Alat Uji Fourier Transform Infrared (FTIR) [55]

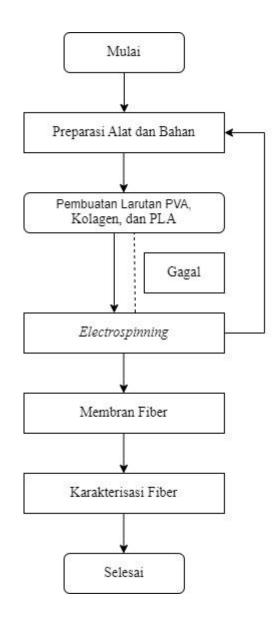
2. Uji Degradabilitas

Pada penelitian ini menggunakan uji degradabilitas yang mengukur kemampuan suatu bahan untuk terdegradasi oleh proses biologis atau alami dalam lingkungan tertentu. Alat yang digunakan adalah neraca digital Ohaus di Laboratorium Basic Science Institut Teknologi Telkom Purwokerto. Metode yang digunakan melibatkan penimbangan sampel secara berkala sebanyak tujuh kali. Sebagai contoh, pada hari pertama, sampel ditimbang menggunakan neraca digital. Dua hari kemudian, penimbangan dilakukan kembali, dan proses ini diulang hingga diperoleh tujuh data penimbangan yang kemudian akan diolah.

Gambar 3.3 Alat Uji Degradabilitas Neraca Digital

3. Scanning Electron Microscope (SEM)


Uji ini untuk memahami struktur mikro atau morfologi pada skala mikro/nano dan untuk melakukan pengukuran kuantitatif komposisi elemen bahan tanpa menggunakan standar. Alat yang digunakan adalah SEM-EDX JEOL JSM-6510LA di Laboratorium Terpadu Universitas Diponegoro, Semarang. Sampel membran dipotong, dikemas, dan diberi label nama sampel. Data hasil uji diolah menggunakan *ImageJ*, *Excel* dan *Origin*.


Gambar 3.4 Alat Uji Scanning Electron Microscope (SEM) [56]

3.3 SKEMA PENELITIAN

Berikut merupakan skema dari Fabrikasi Membran *Vascular Patch* dengan *Polylactic Acid* (PLA) dan Kolagen Menggunakan *Electrospinning* Bagi Penderita Penyakit Jantung Koroner:

Gambar 3.5 Skema Alur Penelitian

Gambar 3.6 Flowchart Penelitian