BAB II

TINJAUAN PUSTAKA

2.1 Kajian Pustaka

Berdasarkan penelitian yang dilakukan Rosyida (2020) pada Forecasting Monthly Red Chili Price in West Java Using ARIMAX Model with Google Trend as Exogenous Variable dengan metode *ARIMAX* memberikan hasil Model ARIMAX(1,1,1) dengan Google Trend sebagai variabel eksogen memberikan peramalan yang lebih baik daripada model ARIMA tanpa variabel eksogen. [7].

Berdasarkan penelitian yang dilakukan oleh Fitriyani (2022) dengan Pemodelan dan Peramalan Harga Cabai Rawit Indonesia dengan Model ARIMAX memiliki hasil model ARIMAX (1.1.0) dengan variabel eksogen harga beras, harga bawang merah, dan nilai tukar petani memberikan peramalan yang cukup akurat dengan nilai MAPE sebesar 10.94%[8].

Berdasarkan penelitian yang dilakukan oleh Derry *et al.*, (2021) yang mempunyai tujuan untuk melakukan peramalan harga jual cabai merah pada tingkat konsumen yang didasarkan data penjualan cabai merah di Pasar Rakyat Kemang Perumda Pasar Tohaga Kabupaten Bogor memanfaatkan metode *Exponential Smoothing* dan metode *Moving Average*. Penelitian tersebut menyajikan hasil penelitian yaitu perhitungan tingkat akurasi kesalahan *Exponential Smoothing* (MAD, MSE, dan MAPE) yang relatif rendah jika dibandingkan dengan metode *Moving Average*, hal menyebabkan harga jual cabai merah pada periode yang akan datang (Januari 2022) diperkirakan sebesar Rp. 27,580. [9]

Berdasarkan penelitian yang dilakukan Silvia dan Achmad (2023) pada peramalan harga cabai rawit di Provinsi Jawa Barat menggunakan metode *ARIMAX* dengan efek variasi kalender hari raya idul fitri. Data yang digunakan dari Badan Pusat Statistik meliputi harga cabai rawit dari tahun 2010-2020 dengan hasil model terbaik (0,1,1) dengan akurasi *MAPE* sebesar 11% menunjukkan keakuratan peramalan yang cukup akurat. [10]

Berdasarkan penelitian yang dilakukan oleh Syam (2022) pada peramalan konsumsi cokelat di Indonesia dan Amerika Serikat menggunakan metode *ARIMAX* dengan efek variasi kalender. Metode yang digunakan yaitu *ARIMAX* serta metode lain seperti *Naïve Trend Linear, Naïve Trend Exponential, Double Exponential Smoothing, Time Series Regression,* dan *ARIMA* untuk perbandingan. Data yang digunakan berasal dari *Google Trend* dengan kata kunci "*chocolate*" untuk Amerika Serikat dan "cokelat" untuk Indonesia dengan periode Januari 2012 hingga Desember 2019 memberikan hasil model *ARIMAX* dengan efek variasi kalender menunjukkan nilai *MAPE* yang sangat presisi dibawah 10 persen dan sangat unggul dibandingkan dengan metode lain yang diuji dalam penelitian [11].

Berdasarkan penelitian yang dilakukan oleh Chotani (2022) pada peramalan harga billet di India menggunakan metode ARIMAX. Penelitian ini bertujuan ini untuk mengembangkan model peramalan yang dapat memprediksi harga billet di masa depan di India berdasarkan indikator makroekonomi, bahan baku, imporekspor, serta produksi dan harga bahan baku tersebut di luar negeri menggunakan metode ARIMAX. Hasil penelitian menunjukkan bahwa model ARIMAX efektif dalam memperkirakan harga billet di India berdasarkan produksi bahan baku dan harga di luar negeri namun tidak secara eksplisit ditunjukkan berapa nilai MAPE yang diperoleh pada penelitian tersebut [12].

Berdasarkan penelitian yang dilakukan oleh Silvia dkk (2023) dengan Pemodelan ARIMAX untuk Peramalan Harga Cabai Merah di Jawa Barat mendapatkan hasil model *ARIMAX*(0,1,1) dengan AIC sebesar -1631,35 dan nilai MAPE sebesar 11% dengan efek variasi kalender mampu memberikan peramalan yang cukup akurat. [13]

Berdasarkan penelitian yang dilakukan oleh H. Khatimah dkk., (2023) pada Peramalan Produksi dan Harga Cabai Merah (*Capsicum annum L.*) di Provinsi Sulawesi Tenggara Menggunakan Metode Exponential Smoothing memberikan hasil analisis peramalan produksi dan harga cabai merah pada tahun 2022-2026

dengan menggunakan metode *double exponential smoothing* yaitu pada produksi cabai merah di Provinsi Sulawesi Tenggara mengalami penurunan produksi setiap tahunnya sedangkan harga cabai merah di Provinsi Sulawesi Tenggara tahun 2022-2026 mengalami peningkatan harga setiap tahunnya.[14]

Berdasarkan penelitian yang dilakukan oleh Adli (2020) pada peramalan harga baja menggunakan model ARIMAX: Studi Kasus di Turki. Penelitian ini bertujuan menilai akurasi peramalan menggunakan metode ARIMA dengan variabel eksogen memanfaatkan data bulanan dari Januari 2013 sampai Desember 2019. Hasil penelitian menunjukkan bahwa penambahan variabel eksogen tidak memberikan hasil yang signifikan dibandingkan dengan metode ARIMA pada kurun waktu 6 bulan. Hal ini mengindikasikan bahwa penambahan variabel eksogen ke dalam model ARIMA tidak selalu meningkatkan akurasi peramalan pada setiap kasus. [15]

Berdasarkan penelitian yang dilakukan oleh Nasirudin dan Dzikrullah (2023) pada Pemodelan Harga Cabai Indonesia dengan Metode Seasonal ARIMAX. Hasil penelitian menunjukkan model terbaik yang dapat digunakan untuk peramalan adalah model SARIMAXX(1,1,2)(0,1,1)₁₂ dengan nilai MAPE sebesar 7.6305% sedangkan untuk peramalan model SARIMAX(1,1,2)(0,1,1)₁₂ semua peubah X dan dummy yaitu 6.899%. Namun, masing-masing peubah bebas X, yaitu curah hujan, inflasi, GT Cabai, GT Harga Sembako, dan GT Sembako Naik terhadap model SARIMAXX (1,1,2)(0,1,1)₁₂ tidak cukup kuat memberikan pengaruh pada model, sehingga dapat disimpulkan bahwa peubah bebas tidak berpengaruh terhadap harga cabai [16].

No	Nama Penulis	Judul	Tahun	Hasil	Perbedaan
			Terbit		
1	Rosyida	Forecasting Monthly	2020	Model ARIMAX(1,1,1) dengan	Menggunakan
		Red Chili Price in West		Google Trend sebagai variabel	variabel eksogen
		Java Using ARIMAX		eksogen memberikan peramalan	dari Google Trend
		Model with Google		yang lebih baik daripada model	
		Trend as Exogenous		ARIMA tanpa variabel eksogen	
		Variable			
2	Fitriyani	Pemodelan dan	2022	hasil model ARIMAX (1.1.0)	Variabel eksogen
		Peramalan Harga Cabai		dengan variabel eksogen harga	harga beras,
		Rawit Indonesia dengan		beras, harga bawang merah, dan	bawang merah dan
		Model ARIMAX		nilai tukar petani memberikan	nilai tukar petani
				peramalan yang cukup akurat	
				dengan nilai MAPE sebesar	
				10.94%	
3	Derry Dardanella,	Peramalan Harga Jual	2022	Penelitian tersebut menyajikan	Evaluasi Metrik
	Agung Prayudha	Cabai Merah di Pasar		hasil penelitian yaitu perhitungan	berbeda yaitu
	Hidayat, Sesar Husen	Rakyat Pasar Kemang		tingkat akurasi kesalahan	MAD
		Perusahaan Umum		Exponential Smoothing (MAD,	

No	Nama Penulis	Judul	Tahun	Hasil	Perbedaan
			Terbit		
	Santosa, dan Ridwan	Daerah Pasar Tohaga		MSE, dan MAPE) yang relatif	
	Siskandar	Kabupaten Bogor		rendah jika dibandingkan dengan	
				metode Moving Average	
4	Rara Hera Silvia dan	Penerapan Metode	2023	pada peramalan harga cabai rawit	Variabel eksogen
	Anneke Iswani	ARIMAX Dengan Efek		di Provinsi Jawa Barat	hanya memakai
	Achmad	Variasi Kalender Pada		menggunakan metode ARIMAX	variasi kalender
		Peramalan Komoditas		dengan efek variasi kalender hari	idul fitri
		Cabai Rawit di Provinsi		raya idul fitri. Data yang	
		Jawa Barat		digunakan dari Badan Pusat	
				Statistik meliputi harga cabai rawit	
				dari tahun 2010-2020 dengan hasil	
				model terbaik (0,1,1) dengan	
				akurasi <i>MAPE</i> sebesar 11%	
				menunjukkan kemampuan	
				peramalan yang cukup akurat	
5	Andy Rezky Pratama	Appliaction of Auto	2022	memberikan hasil model ARIMAX	Membandingkan
	Syam	Regressive Integrated		dengan efek variasi kalender	ARIMAX dengan

No	Nama Penulis	Judul	Tahun	Hasil	Perbedaan
			Terbit		
		Method Moving		menunjukkan nilai <i>MAPE</i> yang	Metode seperti
		Average		sangat presisi dibawah 10 persen	Naïve Trend
		Ecogenous(ARIMAX)		dan sangat unggul dibandingkan	Linear, Naïve
		with Calender Variation		dengan metode lain yang diuji	Trend Exponential,
		Effect Method for		dalam penelitian	Double
		Forecasting Chocolate			Exponential
		Data in Indonesia and			Smoothing, Time
		United States			Series Regression
6	Asmita Chotani	Forecasting of Billet	2020	Hasil penelitian menunjukkan	Tidak
		Price Using ARIMAX		bahwa model ARIMAX efektif	menunjukkan hasil
		Model		dalam memperkirakan harga billet	evaluasi metrik
				di India berdasarkan produksi	seperti mape
				bahan baku dan harga di luar	
				negeri namun tidak secara eksplisit	
				ditunjukkan berapa nilai MAPE	
				yang diperoleh pada penelitian	
				tersebut	

No	Nama Penulis	Judul	Tahun	Hasil	Perbedaan
			Terbit		
7	R. H. Silvia and	Penerapan Metode	2023	Peramalan Harga Cabai Merah di	Tidak
	Anneke Iswani	ARIMAX dengan Efek		Jawa Barat mendapatkan hasil	membandingkan
	Achmad	Variasi Kalender pada		model ARIMAX(0,1,1) dengan AIC	dengan metode
		Peramalan Harga		sebesar -1631,35 dan nilai MAPE	lain dan evaluasi
		Komoditas Cabai Rawit		sebesar 11% dengan efek variasi	metrik hanya mape
		di Provinsi Jawa Barat		kalender mampu memberikan	
				peramalan yang cukup akurat	
8	H. Khatimah, A.	Analisis Peramalan	2023	Hasil analisis peramalan produksi	Data
	Abdi, and W. G.	Produksi dan Harga		dan harga cabai merah pada tahun	menggunakan
	Abdullah	Cabai Merah (Capsicum		2022-2026 dengan menggunakan	tahunan dan
		annum L.) di Provinsi		metode double exponential	double exponential
		Sulawesi Tenggara		smoothing yaitu pada produksi	smoothing
				cabai merah di Provinsi Sulawesi	
				Tenggara mengalami penurunan	
				produksi setiap tahunnya	
				sedangkan harga cabai merah di	
				Provinsi Sulawesi Tenggara tahun	

No	Nama Penulis	Judul	Tahun	Hasil	Perbedaan
			Terbit		
				2022-2026 mengalami peningkatan	
				harga setiap tahunnya	
10	Kaveh Ahmadi Adli	Forecasting Steel Price	2020	Hasil penelitian menunjukkan	ARIMAX pada
		Using ARIMAX Model:		bahwa penambahan variabel	objek harga besi
		A Case Study of Turkey		eksogen tidak memberikan hasil	
				yang signifikan dibandingkan	
				dengan metode ARIMA pada	
				kurun waktu 6 bulan. Hal ini	
				mengindikasikan bahwa	
				penambahan variabel eksogen ke	
				dalam model ARIMA tidak selalu	
				meningkatkan akurasi peramalan	
				pada setiap kasus	
11	Nasirudin and A. A.	Pemodelan Harga Cabai	2023	Hasil penelitian menunjukkan	Memakai model
	Dzikrullah	Indonesia dengan		model terbaik yang dapat	SARIMAX dan
		Metode Seasonal		digunakan untuk peramalan adalah	variabel eksogen
		ARIMAX		model	yang berbeda

No	Nama Penulis	Judul	Tahun	Hasil	Perbedaan
			Terbit		
				SARIMAXX(1,1,2)(0,1,1) ₁₂	
				dengan nilai MAPE sebesar	
				7.6305% sedangkan untuk	
				peramalan model	
				SARIMAX $(1,1,2)(0,1,1)_{12}$ semua	
				peubah X dan dummy yaitu	
				6.899%. Namun, masing-masing	
				peubah bebas X, yaitu curah hujan,	
				inflasi, GT Cabai, GT Harga	
				Sembako, dan GT Sembako Naik	
				terhadap model	
				SARIMAXX(1,1,2)(0,1,1) ₁₂ tidak	
				cukup kuat mempengaruhi model,	
				sehingga dapat disimpulkan bahwa	
				peubah bebas tidak berpengaruh	
				terhadap harga cabai	

2.2 Landasan Teori

2.2.1 Pasar dan Dinamika Harga Cabai Merah

Cabai merah adalah salah satu komoditas yang memegang peran krusial dalam perekonomian negara. Cabai merah merupakan salah satu komoditas hortikultura utama memegang peran signifikan dalam ekonomi masyarakat Indonesia karena harganya yang sering fluktuatif dan berpengaruh terhadap inflasi. Naik turunnya harga cabai merah berdampak signifikan terhadap laba yang diperoleh petani untuk memproduksi kembali dan ketika harga turun, petani tidak mampu memproduksi cabai merah secara maksimal dan permintaan konsumen tidak terpenuhi sehingga menyebabkan harga naik dan berdampak pada konsumen [9]

2.2.2 Peramalan Deret Waktu

Peramalan deret waktu adalah teknik analisis statistik yang memprediksi nilai masa depan dari suatu deret data berdasarkan data masa lalu. Deret waktu adalah serangkaian pengamatan atau pengukuran yang dilakukan pada interval waktu yang teratur[17]. *Exponential Smoothing* dan *ARIMAX* merupakan 2 dari sekian metode peramalan deret waktu yang umum digunakan[18].

2.2.3 Metode ARIMA

Autoregressive integrated moving average atau ARIMA adalah salah satu metode yang memiliki komponen autoregressive dan mungkin perlu diferensiasi untuk membuatnya stasioner. Metode ARIMA dapat memberikan perhitungan yang sesuai bila data deret waktu yang digunakan saling ketergantungan atau berkorelasi [17]. ARIMA memodelkan data dan meramalkan data deret waktu dengan komponen trend.

Berikut adalah tiga komponen utama *ARIMAX* :

- 1. Komponen *Autoregressive*(*AR*): Komponen ini menggambarkan hubungan antara nilai deret waktu pada waktu *t* dengan nilai deret dari waktu sebelumnya.
- 2. Komponen integrasi: mengacu pada proses diferensiasi yang diperlukan untuk membuat deret waktu stasioner.

Jika, stasioneritas belum tercapai setelah melakukan diferesiansi pertama dapat dilakukan diferensiasi kedua.

3. Komponen *Moving Average*(*MA*): menggambarkan hubungan antara nilai deret waktu pada waktu *t* dengan nilai-nilai kesalahan(*residuals*) pada waktu sebelumnya.

4. ARIMA

ARIMA memberikan perhitungan yang sesuai bila data deret waktu yang digunakan saling ketergantungan [17].

2.2.3 Metode ARIMAX

Autoregressive integrated moving average atau ARIMAX adalah salah satu metode yang memiliki komponen autoregressive dengan tambahan variabel eksogen [19]. Metode ARIMAX dapat memberikan perhitungan yang sesuai bila data deret waktu yang digunakan saling ketergantungan atau berkorelasi. ARIMAX memodelkan data dan meramalkan data deret waktu dengan komponen trend, musiman, atau noise.

Berikut adalah tiga komponen utama ARIMAX :

- 1. Komponen *Autoregressive*(*AR*): Komponen ini menggambarkan hubungan antara nilai deret waktu pada waktu *t* dengan nilai deret dari waktu sebelumnya.
- 2. Komponen integrasi: mengacu pada proses diferensiasi yang diperlukan untuk membuat deret waktu stasioner.
- 3. Komponen *Moving Average*(*MA*): menggambarkan hubungan antara nilai deret waktu pada waktu *t* dengan nilai-nilai kesalahan(*residuals*) pada waktu sebelumnya.
- 4. Model *ARIMAX*: menggabungkan elemen dari model *ARIMA* dengan penambahan variabel eksogen.

2.2.4 Metode Exponential Smoothing

Exponential Smoothing adalah teknik yang secara terus menerus memperbaiki perkiraan dengan menghaluskan nilai masa lalu dari data deret waktu secara menurun [20]

Terdapat beberapa variasi metode Exponential Smoothing, antara lain:

- 1. *Simple Exponential Smoothing*; digunakan untuk meramalkan data deret waktu tanpa tren atau pola musiman yang kuat.
- 2. Double Exponential Smoothing (Holt's Exponential Smoothing); digunakan ketika deret waktu memiliki tren, tetapi tidak memiliki pola musiman yang jelas yang melibatkan dua komponen, $level(L_t)$ dan tren (T_t) .
- 3. *Triple Exponential Smoothing (Holt-Winter Exponential Smoothing*; digunakan ketika deret waktu memiliki tren dan pola musiman yang kuat dan juga memperhitungkan komponen musiman.

2.2.5 Evaluasi Metrik

MAPE digunakan untuk mengevaluasi ketepatan peramalan menggunakan kesalahan dalam bentuk persentase. Secara sederhana *MAPE* menunjukkan seberapa jauh rata-rata prediksi dari nilai sebenarnya dalam bentuk persentase. Misalkan memprediksi penjualan bulanan dan *MAPE* yang didapatkan 10%, maka berarti rata-rata prediksi meleset sebesar 10% dari angka penjualan sebenarnya. Ini menunjukkan *MAPE* yang lebih rendah menunjukkan model yang lebih akurat.