BAB II

TINJAUAN PUSTAKA DAN LANDASAN TEORI

2.1 Tinjauan Pustaka

Dalam bab ini, peneliti melakukan peninjauan ulang mengenai penelitian terdahulu yang sudah dilakukan dan memiliki relevansi dengan metode yang akan digunakan peneliti, peninjauan ulang dilakukan agar penelitian ini bisa dilakukan dengan sebaik-baiknya dan dipersiapkan dengan sematang-matangnya. Berikut akan ditampilkan beberapa penelitian terdahulu yang memiliki relevansi terhadap penelitian yang akan dilakukan.

Pertama penelitian dengan judul "Manajemen Pencegahan Penularan Penyakit Foot and Mouth Disease (FMD) dan *Lumpy Skin Disease (LSD)* di Puskeswan Baitussalam Kabupaten Aceh Besar" yang dilakukan oleh Dedhi Yustendi, Sari Rahmazana, Yusuf, Elvrida Rosa pada tahun 2022. Penelitian ini bertujuan untuk mengetahui cara untuk pencegahan dan menanggulangi penyakit PMD dan *LSD* di Puskeswan Baitussalam Kabupaten Aceh Besar, pada penelitian ini menyatakan beberapa gejala yang ditimbulkan jika sapi terjangkit *LSD* adalah seperti demam tinggi, mengurangnya nafsu makan, penurunan produksi susu, ingusan, konjungtivitis, hipersalivasi, hingga depresi pada sapi[9].

Kedua, penelitian dengan judul "Tingkat Pengetahuan Panitia Kurban Tentang Penyakit *Lumpy Skin Disease* di Kota Bandar Lampung" yang dilakukan oleh I K Habsari, V R Pertiwi, G G Maradon, JA Putritamara. Penelitian ini dilakukan untuk mengetahui tingkat pengetahuan panitia kurban mengenai penyakit *LSD* di Kota Bandar Lampung dengan melakukan sampel responden berjumlah 100 orang panitia yang tersebar di 20 kecamatan di Kota Bandar Lampung dan diperoleh untuk pengetahuan panitia terkait gejala atau ciri ciri *LSD* adalah 88,2% dimana termasuk dalam kategori baik. Panitia kurban mengetahui bahwa penyakit *LSD* ditandai dengan munculnya benjolan pada kulit leher, punggung dan perut. Pada kriteria penularan *LSD* nilai rata-rata

pengetahuan panitia kurban sebesar 72,6 dimana nilai ini termasuk dalam kategori cukup. Sebesar 37% responden tidak mengetahui penularan *LSD* dapat terjadi langsung dari hewan ke hewan[8].

Ketiga, penelitian dengan judul "Lumpy Skin Disease: Ancaman Penyakit Emerging Bagi Kesehatan Ternak Sapi di Indonesia" yang dilakukan oleh Indrawati Sendow, NS Assadah, A Ratnawati, NLPI Dharmayanti dan M Saepulloh. Penelitian ini menyimpulkan jika LSD merupakan penyakit yang serius pada hewan ruminansia seperti sapi dan kerbau, dikarenakan sifat penyakit yang menyebar juga maka diperlukan kesiapsiagaan untuk masuknya LSD ke Indonesia dengan adanya perangkat diagnostik yang cepat serta akurat untuk mendiagnosa penyakit ini lebih awal, sehingga kemungkinan masuknya penyakit ini ke Indonesia bisa dideteksi, dilaporkan dan direspon sedini mungkin[7].

Keempat, penelitian dengan judul "Deteksi Penyakit Kulit Serupa Pada Wajah Berbasis Mobile dengan Metode *Convolutional Neural Network*" yang dilakukan oleh Muhamad Ath-Thariq, dan Teguh Nurhadi Suharsono. Penelitian ini mengimplementasi metode *Convolutional Neural Network* dengan arsitektur LeNet-5 serta dilakukan pembagian dataset menggunakan perbandingan 70:30 setelah 100 *epoch* dengan menghasilkan tingkat *accuracy* sebesar 81%. Penelitian ini menyatakan jika *CNN* mampu mengenali pola-pola rumit pada gambar atau citra dan mampu belajar dari karakteristik yang khas berdasarkan permasalahan yang sedang diteliti yaitu tentang berbagai jenis penyakit kulit. *CNN* mampu membedakan kondisi kulit normal dan kondisi kulit yang sedang mengalami masalah[11].

Kelima, penelitian dengan judul "Klasifikasi Penyakit Mata Menggunakan *Convolutional Neural Network (CNN)*" yang dilakukan pada tahun 2021 oleh Fani Nurona Cahya, Nila Hardi, Dwiza Riana, dan Sri Hadianti. Penelitian ini dilakukan untuk mengklasifikasikan penyakit mata menggunakan algoritma *Convolutional Neural Network (CNN)* dengan arsitektur model *AlexNet*, penelitian ini dilakukan dengan 4 kelas

untuk normal, *katarak*, glaukoma, serta *retina disease* dan dilakukan resize menjadi 224x224px dengan total 150 *epoch* dan menghasilkan *accuracy training* sebesar 98.37%[17].

Keenam, penelitian dengan judul "Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN)" yang dilakukan oleh Didit Iswantoro, dan Dewi Handayani UN yang dilakukan pada tahun 2022 yang meneliti tentang penyakit pada tanaman jagung dengan tujuan untuk membantu para petani yang memiliki kesulitan untuk membedakan penyakit pada tanaman mereka. Penelitian ini dilakukan dengan algoritma CNN untuk klasifikasi 2 jenis penyakit dan digunakan sejumlah 2000 gambar dataset penyakit jagung. Penelitian ini menghasilkan accuracy training sebesar 97.5%, serta 100% pada tingkat accuracy validation-nya, dan menghasilkan tingkat accuracy sebesar 94% pada data testing yang baru. Penelitian ini menyimpulkan jika algoritma CNN mampu dalam permasalahan klasifikasi penyakit tanaman jagung dengan dataset berupa data citra dan memiliki tingkat accuracy yang cukup tinggi[18].

Ketujuh, penelitian yang berjudul "Applying Different Resampling Strategies in Random Forest Algorithm to Predict Lumpy Skin Disease" dilakukan oleh Suparyati, Emma Utami, dan Alva Hendi Muhammad pada tahun 2021. Penelitian ini dilakukan teknik undersampling dan oversampling pada random forest classifier untuk menyeimbangkan dataset penyakit LSD agar model bisa terhindarkan dari situasi bias. Performa random forest classifier bekerja dengan baik pada data undersampling namun mempunyai nilai yang lebih tinggi pada oversampling menggunakan teknik SMOTE. Performa metrics memiliki nilai lebih tinggi sebesar 1-2% menggunakan teknik SMOTE untuk data resampling[6].

Kedelapan, penelitian berjudul "ResNet-50 vs. EfficientNet-B0: Klasifikasi Multi-Sentrik Kelainan Paru Menggunakan Deep Learning" dilakukan oleh Kajal Kansal, Tej Bahadur Chandra, dan Akansha Singh

dari Bennett University pada tahun 2023. Penelitian ini melakukan penelitian mengenai kelainan paru dengan tujuan membantu para tenaga kesehatan dalam mendiagnosa berbagai penyakit paru secara lebih akurat dan cepat. Penelitian ini dilakukan dengan membandingkan dua algoritma deep learning, yaitu *ResNet-50* dan *EfficientNet-B0* dan menggunakan dataset yang berasal dari Kaggle dan Mendeley yang mencakup beberapa jenis penyakit paru seperti Covid-19, Pneumonia-Bakteri, Pneumonia-Virus, dan kondisi normal. Penelitian ini menggunakan total 5228 gambar dari Kaggle dan 9208 gambar dari Mendeley. Hasil penelitian menunjukkan bahwa *EfficientNet-B0* menghasilkan *accuracy training* sebesar 98.07% dan *accuracy testing* sebesar 99.62% pada dataset Kaggle, serta 98.74% untuk *accuracy testing* sebesar 99.78% untuk *accuracy testing* pada dataset Mendeley. Penelitian ini menyimpulkan bahwa *EfficientNet-B0* lebih unggul dibandingkan *ResNet-50* dalam klasifikasi kelainan paru dengan menggunakan gambar X-ray dada[19].

Kesembilan, penelitian berjudul "Leaf Image Identification: CNN with EfficientNet-B0 and ResNet-50 Used to Classify Corn Disease" dilakukan oleh Wisnu Gilang Pamungkas, Muchammad Iqbal Putra Wardhana, Zamah Sari, dan Yufis Azhar dari Universitas Muhammadiyah Malang pada tahun 2023. Penelitian ini meneliti penyakit pada tanaman jagung dengan tujuan membantu petani mengidentifikasi penyakit lebih awal untuk mencegah kerugian akibat gagal panen. Penelitian ini menggunakan algoritma Convolutional Neural Network (CNN) dengan dua model yang berbeda, yaitu EfficientNet-B0 dan ResNet-50, untuk mengklasifikasikan empat jenis penyakit daun jagung: Blight, Common Rust, Grey Leaf Spot, dan Healthy. Dataset yang digunakan diambil dari Kaggle dengan total 4188 gambar, yang dibagi menjadi 70% data training dan 30% data validation. Hasil penelitian menunjukkan bahwa model EfficientNet-B0 mencapai accuracy 94% sementara model ResNet-50 mencapai accuracy 93%. Penelitian ini menyimpulkan bahwa model

EfficientNet-B0 lebih unggul dalam klasifikasi penyakit daun jagung dibandingkan dengan ResNet-50.

Kesepuluh, Penelitian berjudul "Perbandingan Kinerja Arsitektur ResNet-50 dan GoogLeNet pada Klasifikasi Penyakit Alzheimer dan Parkinson Berbasis Data MRI" dilakukan oleh Shawn Hafizh Adefrid Pietersz, Basuki Rahmat, dan Eva Yulia Puspaningrum dari Universitas Pembangunan Nasional "Veteran" Jawa Timur pada tahun 2024. Penelitian ini bertujuan untuk membandingkan kinerja dua arsitektur Convolutional Neural Network (CNN), yaitu ResNet-50 dan GoogLeNet, dalam mengklasifikasikan data MRI otak pasien Alzheimer dan Parkinson. Dataset yang digunakan diperoleh dari Kaggle, terdiri dari 2686 gambar yang dibagi menjadi tiga kelas: Alzheimer Disease (894 gambar), CONTROL (898 gambar), dan Parkinson Disease (894 gambar). Model dilatih dengan menggunakan Google Collaboratory dengan optimizer Adam dan SGD, serta hyperparameter *epoch* 100, batch size 128, dan learning rate 0.0001. Hasil penelitian menunjukkan bahwa ResNet-50 dengan optimizer Adam mencapai accuracy tertinggi sebesar 90%, lebih unggul dibandingkan GoogLeNet yang mencapai accuracy maksimal 82%. Penelitian ini menyimpulkan bahwa ResNet-50 lebih efektif dalam klasifikasi penyakit Alzheimer dan Parkinson berbasis data MRI dibandingkan GoogLeNet.

Penelitian yang menggunakan arsitektur *CNN*, khususnya *EfficientNet-B0* dan *ResNet-50*, menunjukkan performa yang baik dalam klasifikasi berbagai jenis penyakit berdasarkan data gambar. *EfficientNet-B0* cenderung lebih efisien dengan *accuracy* yang tinggi dalam berbagai tugas klasifikasi, sementara *ResNet-50* unggul dalam menangani data yang kompleks dengan kedalaman jaringannya. Oleh karena itu, penggunaan *EfficientNet-B0* dan *ResNet-50* dalam penelitian diharapkan bisa didapatkan model terbaik terhadap *dataset LSD*.

Tabel 2. 1 Tabel Penelitian Sebelumnya

No	Judul Penelitian	Tujuan	Metode Penelitian	Hasil Penelitian	Keterangan
1	Manajemen Pencegahan Penularan Penyakit Foot and Mouth Disease (FMD) dan Lumpy Skin Disease (LSD) di Puskeswan Baitussalam Kabupaten Aceh Besar(2022)[9]	Mengetahui cara untuk pencegahan dan menanggulangi penyakit PMD dan LSD di Puskeswan Baitussalam Kabupaten Aceh Besar	Survey dengan wawancara	Penyebaran LSD muncul di wilayah Baitussalam pada bulan Mei 2022 dan meningkat drastis pada bulan Juni 2022 dan upaya yang diterapkan untuk menurunkan jumlah kasus adalah dengan menerapkan; Koordinasi dengan Instansi terkait, melakukan perpanjangan masa karantina hewan ternak di Desa untuk tidak	Pada penelitian ini difokuskan mengenai bagaimana <i>LSD</i> menyebar serta pencegahan dan menanggulangi penyakit <i>LSD</i> .

No	Judul Penelitian	Tujuan	Metode	Hasil Penelitian	Keterangan
		Tajaan	Penelitian		riotorungun
				dikeluarkan dari Desa,	
				Pengobatan hewan	
				terinfeksi <i>LSD</i> dan	
				melakukan karantina,	
				monitoring LSD,	
				melaksanakan	
				biosecurity, penyekatan	
				(segregation),	
				pembersihan (cleaning),	
				desinfeksi (desinfeksi),	
				vaksinasi.	
	Tingkat	Penelitian ini		Hasil penelitian	
	Pengetahuan	bertujuan untuk		dilapangan	Penelitian ini difokuskan pada
2	Panitia Kurban	mengetahui seberapa	Sampel	menunjukkan bahwa	pengukuran tingkat pengetahuan
	Tentang Penyakit	dalam pengetahuan	Responden	pengetahuan panitia	para panitia kurban di Kota
	Lumpy Skin	para panitia kurban		kurban mengenai	Bandar Lampung.
	Disease di Kota	mengenai sapi yang		penyakit Lumpy Skin	

No	Judul Penelitian	Tujuan	Metode Penelitian	Hasil Penelitian	Keterangan
	Bandar	terjangkit LSD dan		Disease dengan kriteria	
	Lampung(2023)[8]	tidak sehingga bisa		penilaian ciri-ciri hewan	
		dimengerti apakah		ternak terjangkit LSD,	
		sapi yang akan		penularan <i>LSD</i> dan	
		dipotong terbilang		penanganan hewan	
		layak untuk dipotong		ternak yang terjangkit	
		atau tidak.		LSD di Kota Bandar	
				Lampung termasuk	
				dalam kategori Cukup	
				dengan nilai 75.03	
				sehingga perlu untuk	
				ditingkatkan dalam	
				memahami penyakit	
				LSD.	
	Lumpy Skin	Penelitian ini		Penelitian ini	Penelitian ini berfokuskan pada
3	Disease: Ancaman	dilakukan dengan		menghasilkan mengenai	LSD itu sendiri dan memberikan
	Penyakit Emerging	tujuan untuk		cara penularan LSD	informasi mengenai cara

No	Judul Penelitian	Tujuan	Metode	Hasil Penelitian	Keterangan
110	Judui i chemian	Tujuan	Penelitian	Trasii i cheman	rectorungun
	Bagi Kesehatan	mengetahui cara		seperti dengan gigitan	penularan, gejala klinis, faktor
	Ternak Sapi di	penularan, gejala		nyamuk aedes sp, gejala	resiko, hingga pencegahan dan
	Indonesia(2021)[7]	klinis, faktor resiko,		yang terlihat dari	pengendalian penyakit LSD
		hingga pencegahan		munculnya benjolan	sehingga diharapkan bisa
		dan pengendalian		pada kulit sapi, dan	membantu untuk penelitian
		penyakit LSD hingga		faktor resiko yang ada	selanjutnya mengenai <i>LSD</i> .
		kesiapsiagaan dalam		di Indonesia yaitu	
		menghadapi		seperti iklim yang basah	
		masuknya <i>LSD</i> di		dan lembab menjadi	
		Indonesia		faktor penunjang	
				penyebaran penyakit	
				LSD ini, hingga cara	
				menanggulangi dan	
				pengendalian LSD	
				seperti vaksinasi. Pada	
				penelitian ini juga	
				menyatakan jika	

No	Judul Penelitian	Tuinas	Metode	Hasil Penelitian	Vatananaan
INO	Judui Penentian	Tujuan	Penelitian	Hash Penemian	Keterangan
				diperlukan perangkat	
				deteksi untuk	
				melakukan	
				pendeteksian dini LSD	
				di Indonesia.	
		Tujuan penelitian ini		Penelitian ini	Pada penelitian sebelumnya,
		adalah untuk		mengimplementasi	subjek penelitiannya adalah orang
	Deteksi Penyakit	melakukan		algoritma Convolutional	dengan jenis kulit yang berbeda
	Kulit Serupa Pada	pengembangan		Neural Network dengan	dan menggunakan arsitektur CNN
	Wajah Berbasis	sistem pendeteksi	CNN,	arsitektur LeNet-5 dan	LeNet-5. Namun, dalam
1	Mobile dengan	penyakit kulit pada	kaggle,	melakukan pembagian	penelitian ini, subjek
4	Metode	wajah sehingga	confusion	dataset dengan	penelitiannya adalah para
	Convolutional	masyarakat	matrix.	perbandingan 70:30	peternak yang kurang mengerti
	Neural Network	Indonesia mampu		setelah 100 epoch dan	maupun kurang memiliki
	(2023)[11]	memahami penyakit		menghasilkan tingkat	pengalaman dalam penanganan
		kulit yang ada pada		accuracy sebesar 81%.	penyakit ternak sapi terutama
		wajah dengan		Penelitian ini	penyakit LSD serta penelitian ini

No	Judul Penelitian	Tujuan	Metode	Hasil Penelitian	Keterangan
INO	Judui Felientian	Tujuan	Penelitian	riasii Feliciluali	Reterangan
		pengimplementasian		menyatakan jika CNN	akan menggunakan arsitektur
		metode		mampu mengenali pola-	yang dibuat sendiri.
		Convolutional		pola rumit pada gambar	
		Neural Network		atau citra dan mampu	
		(CNN) menggunakan		belajar dari karakteristik	
		arsitektur LeNet-5.		yang khas berdasarkan	
				permasalahan yang	
				sedang diteliti yaitu	
				tentang berbagai jenis	
				penyakit kulit.	
	Klasifikasi	Tujuan penelitian ini	CNN	Pada penelitian ini	Pada penelitian sebelumnya
		adalah melakukan	AlexNet,	diperoleh accuracy	dilakukan pemodelan dengan
	Penyakit Mata pembaruan Menggunakan Convolutional penelitian me	pembaruan	ŕ	model CNN AlexNet	arsitektur AlexNet untuk meneliti
5		penelitian mengenai	Kaggle, Confusion	sebesar	jenis penyakit mata sebagai objek
	Neural Network	klasifikasi penyakit	Matrix	98.37% dengan total	penelitiannya, dan pada penelitian
		mata dengan	wairix	dataset sebanyak 610	yang akan dilakukan akan terdapat
	(CNN)(2021)[17]	mengimplementasik		dan dibagi menjadi 439	perbedaan di mana untuk

No	Judul Penelitian	Tujuan	Metode Penelitian	Hasil Penelitian	Keterangan
		an Convolutional		data training 50 data	pembuatan modelnya tidak
		Neural Network		validation dan 121 total	didasarkan pada arsitektur yang
		(CNN) dengan		data testing yang di-	sudah ada namun akan dibuat
		arsitektur AlexNet		resize menjadi	dengan model CNN secara kustom
		yang diperbaharui		224x224px dengan total	dan seefisien sesuai dengan
		pada 4 kelas		150 epoch untuk	kebutuhan.
		penyakit terbaru.		mengklasifikasikan 4	
				jenis kelas penyakit	
				mata.	
	Klasifikasi	Tujuan penelitian ini		Penelitian mengenai	Pada penelitian sebelumnya
	Penyakit Tanaman	adalah memberikan	CNN,	penyakit tanaman	terdapat perbedaan pada objek
	Jagung	solusi penerapan		jagung ini dibagi	penelitian dan persamaan pada
6	Menggunakan	teknologi kepada	Kaggle,	menjadi 2 kelas untuk	metode yang akan digunakan yaitu
0	Metode	petani tanaman	Confusion Matrix	pembagian penyakitnya	objek yang diteliti pada penelitian
	Convolutional	jagung dengan		dan dilakukan dengan	ini adalah penyakit pada tanaman
	Neural Network	mengembangkan		algoritma CNN dan	jagung dengan 2 jenis penyakit,
	(CNN)(2022)[18]	metode CNN untuk		dilakukan training	penelitian ini memiliki persamaan

No	Judul Penelitian	Tujuan	Metode	Hasil Penelitian	Keterangan	
140	Judui i cheman	Tujuan	Penelitian	Tiushi i dhennan	rectorangun	
		membedakan		dengan total jumlah	dengan penelitian yang akan	
		penyakit pada		dataset 2000 gambar	dilakukan yaitu pada algoritma	
		tanaman jagung,		dengan tingkat	CNN yang akan digunakan bahkan	
		yaitu hawar daun dan		accuracy training	pada jumlah kelas yang sama	
		karat daun,		sebesar 97.5%,	yaitu 2 kelas.	
				accuracy validation		
				100%, dan accuracy		
				testing 94%		
				menggunakan data baru		
				yang diselesaikan pada		
				iterasi epoch ke-100.		
				Penelitian ini		
				menyimpulkan jika		
				algoritma CNN juga		
				cocok untuk klasifikasi		
				dengan 2 kelas.		
	Applying Different	Penelitian ini	Random	Penelitian ini	Penelitian ini mempunyai	

No	Judul Penelitian	Tujuan	Metode	Hasil Penelitian	Keterangan
INO	Judui Fenentian	i ujuan	Penelitian	riasii renenuan	Keterangan
	Resampling	bertujuan untuk	Forest	menghasilkan bahwa	perbedaan yang cukup jelas
	Strategies in	menjadi langkah	Algorithm	algoritma Resampling	dengan penelitian yang akan
	Random Forest	awal dalam	& SMOTE,	berhasil untuk	dilakukan yaitu perbedaan tujuan
	Algorithm to	mengatasi	Mendeley	digunakan sebagai	serta perbedaan metode yang
7	Predict Lumpy Skin	penyebaran Lumpy	Data,	solusi dataset yang	digunakan, tujuan penelitian ini
	Disease(2022)[6]	Skin Disease pada	Confusion	tidak seimbang dengan	dilakukan untuk mendapatkan
		hewan ternak, fokus	Matrix	menggunakan teknik	solusi atas ketidakseimbangan
		utama pada		undersampling dan	dataset dengan metode Random
		penelitian ini adalah		oversampling,	Forest yang bisa menjadi salah
		pendeteksian dini		sedangkan untuk	satu solusi jika terdapat imbalance
		mengenai		Random Forest	dataset pada penelitian
		penyebaran LSD		Algorithm bekerja	selanjutnya
		menggunakan		dengan baik dengan	
		dataset yang berasal		data undersampling	
		dari mendeley data,			
		serta adanya			
		imbalance class			

No	Judul Penelitian	Tujuan	Metode Penelitian	Hasil Penelitian	Keterangan
		dalam dataset LSD sehingga penelitian ini juga hanya difokuskan untuk mengatasi imbalance data menggunakan teknik SMOTE, dan Random Forest			
		Classifier			
8	ResNet-50 vs.	Membandingkan	<i>EfficientNet</i>	Dengan kaggle dataset,	EfficientNet-B0 lebih unggul
	EfficientNet-B0:	kinerja dua	<i>-B0</i> dan	dihasilkan ResNet-50	dalam klasifikasi abnormalitas
	Multi-Centric	algoritma deep	ResNet-50	dengan Accuracy	paru-paru dibandingkan ResNet-
	Classification of	learning terkini,		training 83,81%,	50. Efisiensi komputasi yang
	Various Lung	ResNet-50 dan		accuracy pengujian	tinggi dengan parameter lebih
	Abnormalities	EfficientNet-B0,		96,18%. EfficientNet-	sedikit.
	Using Deep	dalam klasifikasi		B0: Accuracy training	
	Learning[19]	abnormalitas paru-		98,07%, <i>accuracy</i>	

No	Judul Penelitian	Tujuan	Metode Penelitian	Hasil Penelitian	Keterangan
		paru menggunakan		pengujian 99,62%. Dan	
		dataset multi-sentrik.		pada Mendeley Dataset	
				dihasilkan ResNet-50:	
				Accuracy training	
				97,67%, <i>accuracy</i>	
				pengujian 99,78%.	
				EfficientNet-B0:	
				Accuracy training	
				98,74%, <i>accuracy</i>	
				pengujian 99,78%.	
				EfficientNet-B0	
				menunjukkan performa	
				lebih baik dibandingkan	
				ResNet-50 dalam	
				klasifikasi abnormalitas	
				paru-paru. EfficientNet-	
				B0 menggunakan	

No	Judul Penelitian	Tujuan	Metode	Hasil Penelitian	Keterangan
110	Judui i chentian	i ujuan	Penelitian	Trasii i chentian	Keterangan
				"compound scaling"	
				dan "channel attention"	
				untuk efisiensi dan	
				fokus pada saluran	
				informasi relevan.	
9	Leaf Image	Membandingkan	<i>EfficientNet</i>	EfficientNet-B0	Penelitian ini menunjukkan bahwa
	Identification: CNN	kinerja dua model	<i>-B0</i> dan	mencapai accuracy	EfficientNet-B0 memiliki kinerja
	with EfficientNet-	CNN, EfficientNet-	ResNet-50	94%, sedangkan	lebih baik dibandingkan ResNet-
	B0 and ResNet-50	B0 dan ResNet-50,		ResNet-50 mencapai	50 dalam klasifikasi penyakit daun
	Used to Classify	untuk klasifikasi		accuracy 93%.	jagung, yang menjadikannya lebih
	Corn Disease[20]	penyakit daun			efisien dan efektif untuk
		jagung.			digunakan dalam aplikasi
					pertanian untuk membantu petani
					mendeteksi penyakit pada
					tanaman jagung lebih awal.
10	Perbandingan	Membandingkan	GoogLeNet	ResNet-50: Accuracy	Dataset terdiri dari 2686 gambar
	Kinerja Arsitektur	performa dua	dan ResNet-	terbaik 90% dengan	MRI yang terbagi menjadi 3 kelas:

No	Judul Penelitian	Tujuan	Metode Penelitian	Hasil Penelitian	Keterangan
	ResNet-50 dan	arsitektur	50	optimizer Adam, epoch	Alzheimer Disease (894),
	GoogLeNet pada	Convolutional		100, dan batch size 128.	CONTROL (898), dan Parkinson
	Klasifikasi	Neural Network		GoogLeNet: Accuracy	Disease (894).
	Penyakit Alzheimer	(CNN), ResNet-50		terbaik 82% dengan	
	dan Parkinson	dan GoogLeNet,		optimizer Adam, epoch	
	Berbasis Data	dalam klasifikasi		100, dan batch size 128.	
	MRI[21]	citra MRI pasien		ResNet-50	
		dengan penyakit		menunjukkan performa	
		Alzheimer dan		lebih baik dibandingkan	
		Parkinson.		GoogLeNet dalam	
				klasifikasi penyakit	
				Alzheimer dan	
				Parkinson.	

2.2 Landasan Teori

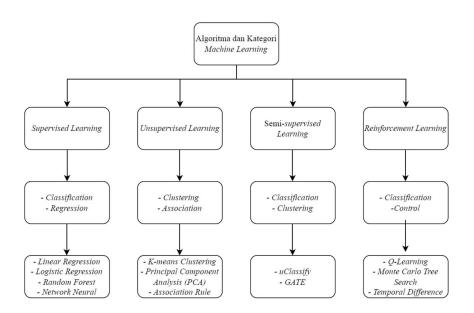
2.2.1 Peternakan Sapi

Peternakan sapi merupakan salah satu jenis peternakan hewan yang sering ditemui di wilayah pedesaan dan menjadi komoditas unggulan yang menduduki peringkat teratas, diikuti oleh ayam dan kambing[3]. Sektor peternakan sapi juga menjadi salah satu pilar pendukung ekonomi[22]. Beberapa jenis usaha peternakan sapi yang umumnya dijumpai di Indonesia termasuk usaha peternakan sapi potong dan sapi perah. Misalnya, Kabupaten Buru di Provinsi Maluku adalah salah satu wilayah utama populasi sapi potong, dengan 60% dari total populasi sapi potong di Provinsi Maluku berada di Kabupaten Buru, dan 40% lainnya tersebar di 7 Kabupaten yang berbeda[22], peternakan sapi perah juga merupakan jenis usaha yang sering ditemukan di Indonesia. Sebagai contoh, Jawa Timur adalah provinsi terbesar dalam produksi susu sapi di Indonesia, berdasarkan data dari tahun 2012 hingga 2016. Rata-rata produksi susu sapi di Jawa Timur mencapai 475,12 ribu ton, yang merupakan sebagian besar dari produksi susu nasional[23].

2.2.2 Lumpy Skin Disease

Lumpy Skin Disease atau LSD adalah penyakit menular yang disebabkan oleh Lumpy Skin Disease Virus (LSDV), yang termasuk dalam genus Capripoxvirus, subfamili Chordopoxvirniae, dan keluarga Poxviridae. Lumpy Skin Disease adalah penyakit yang ditularkan melalui nyamuk, kantong semut, dan lalat (Culicoides). Penyakit ini biasa terjadi pada hewan hewan ruminansia besar seperti kerbau ataupun sapi[24]. LSD memiliki dampak ekonomi yang signifikan bagi peternak susu dan daging, karena penyakit ini menyebabkan penurunan berat badan yang parah, kemandulan sementara atau permanen, keguguran, kerusakan kulit, serta penurunan berat badan[25]. Penyakit LSD pertama kali dilaporkan di Zambia pada tahun 1929 yang kemudian menyebar ke wilayah afrika

lainnya dan menjadi wabah di Israel pada tahun 1989 sebelum akhirnya menyebar ke negara-negara lain di Timur Tengah. Pada tahun 2014, penyakit ini mulai bermuncul di Iran sampai pada tahun 2015, penyakit ini dilaporkan pertama kali di Eropa yaitu di Yunani, di antara perbatasan Turki, Azerbaijan, Georgia, dan Rusia. Pada tahun 2016, penyakit ini dilaporkan mulai masuk ke bagian Eropa serta Asia[26], kemudian pada tahun 2022 penyakit ini pertama kali ditemukan di Riau, Indonesia sampai November 2022 telah ditemukan sebanyak 11.474 kasus *LSD* di 6 Provinsi berbeda di Indonesia menurut data di Sistem Informasi Kesehatan Hewan Nasional(ISIKHNAS)[8]. Penyakit ini ditandai oleh demam, adanya benjolan kulit yang keras, mukosa saluran pencernaan dan pernapasan, serta pembengkakan kelenjar getah bening pada hewan yang terjangkit[27].

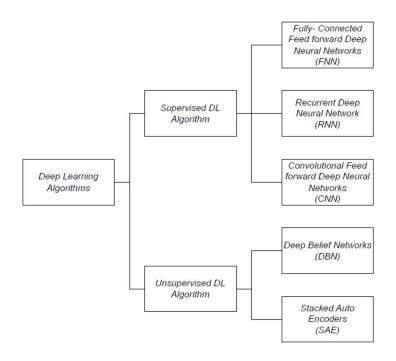

2.2.3 Klasifikasi

Klasifikasi adalah proses untuk menemukan model atau fungsi yang dapat menjelaskan atau membedakan konsep atau kelas data, dengan tujuan memperkirakan kelas dari suatu objek yang labelnya tidak diketahui. Model ini bisa berupa aturan "jika maka" atau pola lain yang mengidentifikasi perbedaan dalam berbagai kelas data[28]. Langkah-langkah dalam klasifikasi melibatkan identifikasi pola yang menjelaskan perbedaan tersebut dan menggunakan pola ini untuk memproyeksikan data yang belum diklasifikasikan ke dalam kelas yang sesuai. Tujuannya adalah agar data yang belum diberi label dapat diklasifikasikan secara akurat ke dalam kelas masing-masing berdasarkan model yang telah dibangun.[29].

2.2.4 Machine Learning

Machine Learning adalah bagian dari bidang Kecerdasan Buatan yang fokus pada cara komputer dapat meningkatkan kecerdasannya melalui pembelajaran dari data[30]. Machine Learning juga ditugaskan untuk memetakan input ke output

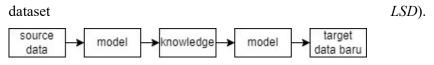
menggunakan fitur yang spesifik yang sudah dirancang secara manual untuk setiap tugas yang diberikan, ini berkaitan dengan pengembangan sistem yang mampu belajar secara otomatis tanpa perlu diprogram berulang kali oleh manusia. *ML* memanfaatkan data yang valid sebagai pembelajaran saat proses *training* sebelum digunakan untuk *testing* guna mencapai hasil *output* yang optimal[31]. *ML* mempunyai beberapa cabang, seperti *Supervised Learning*, *Unsupervised Learning*, dan *Reinforcement Learning*, berikut merupakan ilustrasi mengenai beberapa kategori algoritma *Machine Learning*:



Gambar 2. 1 Algoritma dan Kategori *Machine Learning*[32].

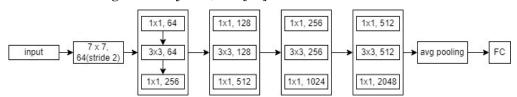
2.2.5 Deep Learning

Deep Learning (DL) adalah salah satu cabang dari machine learning dengan konsep yang lebih kompleks untuk pembentukan arsitekturnya. Persamaan yang mendasar pada ML dan DL adalah dengan adanya pengembangan algoritma berdasarkan data, termasuk data yang terstruktur maupun data yang tidak terstruktur agar bisa


digunakan untuk proses *training* model. *DL* juga mempunyai model yang lebih rumit dibandingkan dengan model *ML* dikarenakan adanya *layer-layer* untuk pembelajaran. Berbeda dengan model Machine Learning, *DL* membutuhkan data yang lebih banyak yang lebih banyak karena agar *DL* bisa bekerja dengan baik dan menghasilkan model yang lebih teroptimisasi[32].

Gambar 2. 2 Jenis-Jenis *Deep Learning*[33].

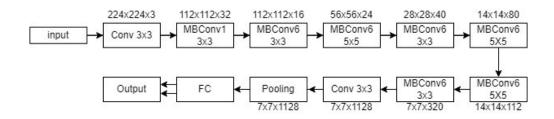
2.2.1 Transfer Learning


Transfer learning adalah metode yang memanfaatkan model yang telah dilatih sebelumnya untuk mengklasifikasikan dataset baru. Dengan pendekatan ini, tidak perlu melatih model dari awal, melainkan hanya melakukan penyesuaian pada tahap akhir model[34]. Transfer learning menggunakan model yang telah dilatih pada dataset domain tertentu (biasanya dataset *ImageNet*) dan kemudian disesuaikan (*fine-tuned*) untuk dataset baru (misalnya

Gambar 2. 3 Ilustrasi Transfer Learning[35]

2.2.2 ResNet-50

ResNet-50, atau Residual Network, adalah sebuah model yang dikembangkan oleh Microsoft dan berhasil memenangkan kompetisi ILSVRC (ImageNet Large Scale Visual Recognition Competition) pada tahun 2015. ILSVRC merupakan kompetisi tahunan yang mengumpulkan berbagai tim untuk mengembangkan algoritma terbaik dalam tugas-tugas computer vision. ResNet-50 memiliki 50 lapisan dan lebih dari 25,6 juta parameter. Arsitekturnya mencakup kombinasi dari konvolusi, blok residual (di mana input sama dengan output), serta fully connected layer[36]. ResNet-50 menunjukkan kemudahan optimalisasi yang lebih baik dibandingkan CNN "vanilla" karena adanya layer residual, yang memungkinkan gradien mengalir lebih efektif dan menghindari masalah "vanishing gradient". Selain itu, ResNet-50 mencapai peningkatan signifikan dalam klasifikasi gambar, mengurangi tingkat kesalahan top-5 pada dataset ImageNet menjadi 6,71%[37].

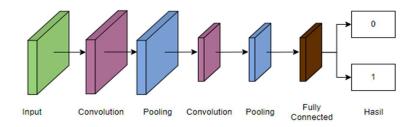


Gambar 2. 4 Ilustrasi ResNet-50[37]

2.2.3 EfficientNet-B0

EfficientNet adalah salah satu arsitektur CNN yang ditemukan dengan melakukan penskalaan secara teratur pada tiga komponen utama: kedalaman, kelebaran, dan resolusi. Penambahan ketiga komponen ini dilakukan dengan cara yang sangat teratur sehingga menghasilkan jumlah parameter yang lebih sedikit. Hal ini membuat waktu pemrosesan menjadi lebih cepat, sekaligus meningkatkan

accuracy dibandingkan dengan model lainnya[38]. EfficientNet-B0 mencapai accuracy top-1 sebesar 77.1% pada ImageNet dengan hanya 5.3 juta parameter dan 0.39 miliar FLOPS. Dibandingkan dengan model lain seperti ResNet-50 dan DenseNet-169, EfficientNet-B0 menggunakan parameter dan FLOPS yang jauh lebih sedikit dengan tingkat accuracy yang lebih tinggi. Selain itu, EfficientNet-B0 menunjukkan performa yang baik dalam transfer learning pada berbagai dataset seperti CIFAR-10 dan CIFAR-100, dengan pengurangan parameter hingga 21 kali lipat dibandingkan model sebelumnya. Temuan ini menunjukkan bahwa metode compound scaling yang digunakan dalam EfficientNet-B0, yang menyeimbangkan kedalaman, lebar, dan resolusi jaringan, dapat meningkatkan kinerja secara signifikan dengan efisiensi yang lebih baik. EfficientNet-B0 memiliki keterbatasan karena terutama berfokus pada tugas klasifikasi gambar dan belum banyak mengeksplorasi aplikasi lainnya[39].



Gambar 2. 5 Ilustrasi EfficientNet-B0[39]

2.2.4 *CNN*

Convolutional Neural Network (CNN) merupakan jaringan saraf tiruan yang mempunyai fungsi untuk mengolah data, seperti klasifikasi dan biasa diaplikasikan kepada data citra[40]. Pengimplementasian CNN terinspirasi dari visual cortex manusia

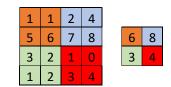
untuk pengenalan citra[41].

Gambar 2. 6 Arsitektur Convolutional Neural Network[40].

2.2.4.1 Convolution

Convolution adalah operasi matematika yang menggabungkan 2 matrik berbeda yang akan menghasilkan matrik dengan ukuran baru[42].

2.2.4.2 ReLU (Rectified Linear Unit)


Fungsi aktivasi *ReLU* (*Rectified Linear Unit*) mempunyai fungsi agar nilai negatif berubah menjadi nol pada matriks hasil konvolusi[43].

2.2.4.3 *Pooling*

Pooling adalah metode untuk pengurangan dimensi pada matriks hasil konvolusi dengan menggunakan operasi pooling dan terdiri dari filter ataupun kernel berukuran tertentu yang bergeser secara bergantian secara horizontal ke seluruh area feature map[42].

2.2.4.3.1 *Max Pooling*

Max-pooling adalah salah satu operasi pooling dengan cara mencari nilai maksimum dengan menggeser kernel sejauh nilai stride[42], ilustrasi max pooling ada pada Gambar 2.7.

Gambar 2. 7 Ilustrasi Max Pooling

2.2.4.4 Fully Connected Layer

Dalam *fully connected layer*, setiap *neuron* memiliki koneksi penuh ke setiap *activation* dalam lapisan sebelumnya. *Fully connected layer* terdiri dari 3 jenis *layer* yaitu seperti *input layer*, *hidden layer* dan *output layer*.

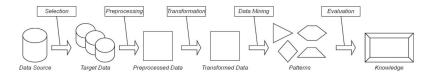
2.2.4.4.1 *Input Layer*

Input Layer merupakan hasil dari penggabungan seluruh matriks feature map yang diperoleh dari tahap layer pooling. Seluruh pixel dalam matriks tersebut kemudian diubah menjadi vektor dengan panjang yang sama dengan jumlah pixel dalam matriks yang berasal dari layer pooling. Selanjutnya, semua nilai dalam input layer digunakan dalam perhitungan pada hidden layer.

2.2.4.4.2 Hidden Layer

Perhitungan pada lapisan ini melibatkan perkalian antara nilai-nilai dalam Input *Layer* dengan bobot yang telah diatur sebelumnya, kemudian ditambahkan dengan nilai bias[44].

2.2.4.4.3 *Output Layer*


Perhitungan pada lapisan ini melibatkan perkalian antara nilai-nilai hasil perhitungan dari lapisan tersembunyi dengan bobot yang telah diatur sebelumnya, yang kemudian ditambahkan dengan nilai bias[44].

2.2.4.5 *Softmax*

Softmax adalah salah satu fungsi aktivasi yang digunakan untuk mengklasifikasikan data berdasarkan nilai probabilitas tertinggi. Nilai softmax atau probabilitas tiap data berkisar antara 0 hingga 1[45].

2.2.5 Knowledge Discovery in Database

Knowledge Discovery in Database (KDD) merupakan metode yang merujuk pada proses ekstraksi informasi dari sejumlah besar data digital, seperti yang ada dalam database atau dataset[46]. Proses pada KDD adalah seperti ekstraksi informasi seperti pengenalan pola yang belum tersektraksi, dan hasilnya bisa digunakan untuk melakukan decision making ataupun klasifikasi seperti penelitian yang sedang dilakukan[47]. F

Gambar 2. 8 Proses Metode Knowledge Discovery in Database[46]

Proses *KDD* bisa terlihat pada **Gambar 2.8** dengan rincian sebagai berikut:

2.2.5.1 Selection and Addition.

Pada langkah ini, semua data dikumpulkan dan diintegrasikan ke dalam satu dataset, yang menjadi dasar untuk pemodelan *Deep Learning*. Data ini bisa berasal dari dokumentasi, hasil pengambilan data dari internet, atau menggunakan dataset yang sudah tersedia di situs web seperti Kaggle ataupun Mendeley Data[47].

2.2.5.2 Preprocessing.

Pada proses ini, dilakukan langkah-langkah seperti *load* data, menghilangkan *noise*, dan *cleaning* data untuk

meningkatkan kualitas data untuk diproses ke proses selanjutnya[47]. Contoh lain untuk *preprocessing* adalah seperti Mengubah ukuran gambar untuk membuatnya seragam, melakukan pengurangan nilai rata-rata lokal dari setiap *pixel*, dan mengkonversi gambar ke skala abu-abu sebesar 50% untuk meratakan ketajaman citra[48].

2.2.5.3 Transformation.

Data transformation merupakan tahapan di saat data ditransformasikan dan disesuaikan untuk kebutuhan data mining. Pada langkah ini, dilakukan transformasi data seperti augmentasi data dengan resizing ataupun scaling untuk membantu pembelajaran model Deep Learning yang lebih baik[47]. Terdapat juga beberapa teknik untuk melakukan data transformation seperti smoothing, attribut, construction, normalization, aggregation, dan discretization[49].

2.2.5.4 *Data Mining.*

Proses *data mining* merupakan proses pengenalan informasi atau terhadap kebenaran yang baru dan berguna untuk pengenalan pola yang didapat dari data yang dapat diinterpretasikan oleh manusia [28]. Pada tahap *Data Mining* dilakukan sebuah tahap seperti klasifikasi, *clustering*, dan lain – lain [50].

2.2.5.5 Evaluation and Interpretation.

Proses Evaluasi adalah proses pemeriksaan apakah pola yang ditemukan bertentangan dengan fakta atau hipotesa yang ada sebelumnya. Dalam tahap evaluasi, akan digunakan *Confusion Matrix* untuk mengevaluasi kinerja algoritma *CNN* dengan melihat hasil evaluasi berupa nilai *accuracy*[51].

2.2.5.6 Discovered Knowledge.

Pada fase terakhir, akan didapatkan sebuah hasil dari pembelajaran yang telah dilakukan oleh algoritma yang telah dipilih seperti hasil klasifikasi dan diharapkan bisa memberikan efek pada penelitian yang sedang dilakukan[47].

2.2.6 Confusion Matrix

Confusion Matrix merupakan tabel yang memperlihatkan hasil klasifikasi berdasarkan jumlah data uji yang terklasifikasi dengan benar dan yang salah[52]. Confusion matrix akan menggambarkan hasil evaluasi model setelah model menyelesaikan tugasnya, dan hasil ini akan disajikan dalam bentuk tabel[53]. Jika dataset yang digunakan memiliki dua kelas, maka kelas pertama akan dianggap sebagai kelas positif dan kelas kedua sebagai kelas negatif[53]. Evaluasi yang dihasilkan dari confusion matrix mencakup nilai Accuracy.

Tabel 2. 2 *Confusion Matrix*[41]

Nilai Aktual							
			Normal				
Nilai		<i>LSD</i> (0)	(1)				
Prediksi	<i>LSD</i> (0)	TP	FP				
Trediksi	Normal						
	(1)	FN	TN				

True Positive (TP) adalah banyaknya data positif dalam dataset yang teridentifikasi sebagai positif. True Negative (TN) adalah jumlah data negatif dalam dataset yang teridentifikasi dengan benar sebagai negatif. False Positive (FP) adalah jumlah data negatif dalam dataset yang salah diidentifikasi sebagai positif. False Negative (FN) adalah jumlah data positif dalam dataset yang salah diidentifikasi sebagai negatif[53]. Berikut merupakan persamaan evaluasi Confusion Matrix:

Accuracy merupakan jumlah perbandingan antara data yang benar setelah *testing* dengan jumlah keseluruhan data yang ada[53]. Rumus Accuracy ada pada persamaan 1.

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN} \tag{1}$$