
BAB 3

METODE PENELITIAN

3.1 ALUR PENELITIAN

Tahapan dalam proses penelitian ini mencari jurnal terkait maupun referensi lainnya atau studi literatur. Kemudian melakukan pengumpulan data dan mengecek ketersediaan data dikantor BMKG Stasiun Meterologi Sultan Taha Jambi. Setelah data diperoleh dilakukan pengurutan data, kemudian menghitung periode ulang dengan rumus Iwai kadoya. Setelah perhitungan dilakukan, menyajikan periode ulang curah hujan tinggi dalam grafik, kemudian menganalilis. Alur dalam penelitian ini dapat digambarkan sebagai berikut:

Gambar 3.1 Alur penelitian

3.2 DATA

Dalam penelitian periode ulang curah hujan tinggi ini penulis menggunakan data curah hujan selama kurang lebih 40 tahun dari Stasiun Meteorologi Sultan

Thaha Jambi, adapun data yang digunakan dalam penelitian ini menggunakan data curah hujan tinggi dari setiap tahunnya, yang kemudian data curah hujan tinggi itu akan dikelompokkan dan dicari nilai tertingginya berdasarkan tahun kejadiannya, yang kemudian akan diolah dengan menggunakan metode iwai kadoya untuk mendapatkan periode ulang curah hujan tinggi di Kota Jambi.

3.3 PENGOLAHAN DATA

Metode pengolah data yang akan digunakan dalam melakukan perhitungan periode ulang ini adalah :

3.3.1 Metode Iwai Kadoya

Metode ini dilakukan dengan melakukan pengelompokan data terlebih dahulu, pertama – tama data curah hujan maksimum dalam setahun disusun mulai dari harga yang terbesar dan kemudian dibuatkan perhitungan yang diperlukan, dalam penelitian ini penulis menggunakan Microsoft Excel sebagai bantuan dalam melakukan perhitungannya, adapun Perhitungan Iwai Kadoya diterangkan sebagai berikut:

$$\varepsilon = c.\log \frac{x+b}{x_0+b}....(1)$$

Dimana:

 ε = faktor frekuensi

c = faktor Iwai Kadoya

 $\log (xo + b)$ adalah harga rata-rata dari $\log (xi + b)$ dengan ($i = 1, 2, \ldots n$) dan dinyatakan dengan (Xo, b, c dan x_0) diperkirakan dari rumus-rumus sebagai berikut :

Harga perkiraan pertama dari X₀:

$$Log Xo = 1/n \sum log xi(2)$$

Perkiraan harga b:

$$b = \mathbb{E}/m \sum bi \; ; \; m = n/10$$
 $bi = \frac{xs.xt - xo^2}{2 xo \cdot (xs + xt)}.$

(3)

Perkiraan harga X₀:

$$X_0 = log(xo + b)$$

$$= 1/n \sum \log (xi + b)$$
(4)

Perkiraan harga c:

dimana:

Xs = harga pengamatan dengan nomor urut (m) dari yang terbesar

Xt = harga pengamatan dengan nomor urut (m) dari yang terkecil

n = banyaknya data

m = n/10: angka bulat (dibulatkan ke angka yang terdekat)

Kadang-kadang jika harga b sangat kecil maka untuk mempermudah perhitungan harga b dapat diambil b=0. Jika semua tetapan-tetapan tersebut telah didapat, maka curah hujan yang mungkin (probable rainfall) yang sesuai dengan kemungkinan lebih sembarang (arbitrary axcess probability) dapat dihitung dengan rumus:

$$Log(x+b) = log(xo+b) + (1/c)\xi....(7)$$

Perhitungan ini harus didilaksanakan menurut urutan sebagai berikut:

- Harga perkiraan pertama dari Xo didapat dengan rumus (2), dan b didapat dengan rumus (3)
- 2. Log $(x_i + b)$ didapat dan log $(x_o + b)$ didapat dengan rumus (4)
- 3. $\{\log(x_i + b)\}^2$ dihitung dan x^2 dihitung dengan rumus (6)
- 4. Harga ξ yang sesuai dengan kemungkinana lebih sembarang didapat dari tabel variabel normal ξ dan curah hujan yang mungkin diperkirakan dengan rumus (7).

Tabel 3.1 Variabel Normal

Variabel Normal ζ pada Metode Iwai						
No	Т	ζ	1/T			
1	1000	2.27076	0.00100			
2	500	2.03520	0.00200			
3	400	1.98400	0.00250			
4	300	1.92270	0.00333			
5	250	1.87530	0.00400			
6	200	1.82140	0.00500			
7	150	1.74990	0.00667			
8	100	1.64500	0.01000			
9	80	1.58510	0.01250			
10	60	1.50490	0.01667			
11	50	1.45220	0.02000			
12	40	1.38590	0.02500			
13	30	1.29710	0.03333			
14	25	1.23790	0.04000			
15	20	1.16310	0.05000			
16	15	1.06140	0.06667			
17	10	0.90620	0.10000			
18	8	0.81340	0.12500			
19	5	0.59510	0.20000			
20	4	0.47690	0.25000			
21	3	0.30450	0.33333			
22	2		0. 5			

Berikut merupakan contoh tabel variable normal pada metode iwai kadoya, variabel normal iwai kadoya digunakan dalam perhitungan data curah hujan maximum tinggi yang terjadi disetiap tahunnya.

Tabel 3.2 Perhitungan (contoh)

NO	TAHUN	CURAH HUJAN (X)	Log X	Xi+b	log(xi+b)	$[\log(xi+b)]^2$			
		(mm)							
1	1988	388.90	2.5898	376.42	2.576	6.634			
2	2008	315.00	2.4983	302.52	2.481	6.154			
3	1998	234.90	2.3709	222.42	2.347	5.509			
4	2010	233.30	2.3679	220.82	2.344	5.495			
5	1995	227.00	2.3560	214.52	2.331	5.436			
6	1997	220.00	2.3424	207.52	2.317	5.369			
7	2000	215.00	2.3324	202.52	2.306	5.320			
8	2004	192.00	2.2833	179.52	2.254	5.081			
9	1994	185.40	2.2681	172.92	2.238	5.008			
10	1991	183.50	2.2636	171.02	2.233	4.987			
11	2001	178.50	2.2516	166.02	2.220	4.929			
12	1989	170.00	2.2304	157.52	2.197	4.828			
13	2007	158.00	2.1987	145.52	2.163	4.678			
14	1992	154.80	2.1898	142.32	2.153	4.637			
15	2002	152.00	2.1818	139.52	2.145	4.600			
16	2003	151.60	2.1807	139.12	2.143	4.594			
17	1990	148.00	2.1703	135.52	2.132	4.545			
18	1987	134.50	2.1287	122.02	2.086	4.353			
19	1996	132.40	2.1219	119.92	2.079	4.322			
20	2006	130.30	2.1149	117.82	2.071	4.290			
21	1999	129.60	2.1126	117.12	2.069	4.279			
22	2009	125.00	2.0969	112.52	2.051	4.208			
23	1986	118.00	2.0719	105.52	2.023	4.094			
24	1993	109.50	2.0394	97.02	1.987	3.948			
25	2005	103.40	2.0145	90.92	1.959	3.836			
fumlah			55.78		54.91	121.13			
Rerata			2.23		2.20	4.85			
Maksimum			2.59		2.58	6.63			
Minimum			2.01		1.96	3.84			

- 1. Pertama tama, seperti terlihat pada tabel 3.2, setiap data curah hujan tinggi dalam setahun disusun mulai dari harga yang terbesar dan kemudian dibuatkan perhitungan yang diperlukan.
- 2. Harga perkiraan pertama dihitung menurut rumus (2): Log Xo = $1/n \sum log xi$, dengan menggunakan haraga harga pada tabel 3.2.
- b dihitung menurut rumus (3) dengan menggunakan harga harga pada Tabel
 3.3.

Tabel 3.3 Perhitungan b (contoh)

No	X_0	X _t	X_sX_t	$X_s + X_t$	$X_sX_t-X_0^2$	$2X_0$ - (X_s+X_t)	b _i
1	388.90	103.40	40212.26	492.30	11227.69	-151.80	-73.96
2	315.00	109.50	34492.50	424.50	5507.93	-84.00	-65.57
3	234.90	118.00	27718.20	352.90	-1266.37	-12.40	102.10
							-37.43
	b =	-12.48	m/jml bi				

4. 1/c dihitung menurut rumus (5) dengan menggunakan harga – harga pada

$$1/c = 2 c.\sqrt{2/(n-1)} \sum_{n=0}^{\infty} \log_{(n+b)} (\frac{xi+b}{xo+b}) \hat{2}.$$

$$= .\sqrt{2n/(n-1)}.\sqrt{x2-xo2}$$

5. Hasil perhitungan dari curah hujan yang mungkin tejadi diperlihatkan dalam tabel ataupun grafik.