Identifying Product Defects from User Complaints: A Probabilistic Defect Model

Zhang, Xuan and Qiao, Zhilei and Tang, Lijie and Fan, Weiguo and Fox, Edward and Wang, G. Alan (2016) Identifying Product Defects from User Complaints: A Probabilistic Defect Model. Americas Conference on Information Systems (AMCIS).

Identifying Product Defects from User Complaints- A Probabilistic.pdf

Download (679kB) | Preview


The recent surge in using social media has created a massive amount of unstructured textual complaints about products and services. However, discovering potential product defects from large amounts of unstructured text is a nontrivial task. In this paper, we develop a probabilistic defect model (PDM) that identifies the most critical product issues and corresponding product attributes, simultaneously. We facilitate domain-oriented key attributes (e.g., product model, year of production, defective components, symptoms, etc.) of a product to identify and acquire integral information of defect. We conduct comprehensive evaluations including quantitative evaluations and qualitative evaluations to ensure the quality of discovered information. Experimental results demonstrate that our proposed model outperforms existing unsupervised method (K-Means Clustering), and could find more valuable information. Our research has significant managerial implications for mangers, manufacturers, and policy makers.

Item Type: Article
Subjects: H Social Sciences > HB Economic Theory
Divisions: Faculty of Industrial Engineering and Informatics > Information System
Depositing User: staff repository 1
Date Deposited: 26 Jul 2018 14:31
Last Modified: 26 Jul 2018 14:31

Actions (login required)

View Item View Item