The Nature of Enterprise-Service-Fit in the Context of Digital Services

Adrian Engelbrecht
Technische Universität Darmstadt, engelbrecht@is.tu-darmstadt.de

Jin P. Gerlach
Technische Universität Darmstadt, gerlach@is.tu-darmstadt.de

Thomas Widjaja
University of Passau, thomas.widjaja@uni-passau.de

Peter Buxmann
Technische Universität Darmstadt, buxmann@is.tu-darmstadt.de

Follow this and additional works at: http://aisel.aisnet.org/icis2017
The Nature of Enterprise-Service-Fit in the Context of Digital Services

Completed Research Paper

Adrian Engelbrecht
Technische Universität Darmstadt
Hochschulstraße 1,
64289 Darmstadt, Germany
engelbrecht@is.tu-darmstadt.de

Jin P. Gerlach
Technische Universität Darmstadt
Hochschulstraße 1,
64289 Darmstadt, Germany
gerlach@is.tu-darmstadt.de

Thomas Widjaja
University of Passau
Dr.-Hans-Kapfinger-Straße 12,
94032 Passau, Germany
thomas.widjaja@uni-passau.de

Peter Buxmann
Technische Universität Darmstadt
Hochschulstraße 1,
64289 Darmstadt, Germany
buxmann@is.tu-darmstadt.de

Abstract

Many different companies compete with each other to offer users similar digital services. For instance, traditional banks compete with companies like Apple or Google in providing digital payment services. These companies strongly differ in their strengths and weaknesses, and we argue that users might evaluate the same service differently depending on the company providing it. We introduce the concept of “enterprise-service-fit” and argue that it is beneficial if users perceive a company’s resources to fit a service’s requirements. Using a grounded theory approach, we explore what constitutes enterprise-service-fit in the context of digital services and discover five dimensions on which a company’s resources might fit a service’s requirements. We also offer some preliminary insights regarding potential consequences of fit. We contribute to research concerned with users’ evaluations of digital services that has so far overlooked an interaction between company and service characteristics.

Keywords: Enterprise-Service-Fit, Digital Services, Service Adoption, Grounded Theory

Introduction

In today’s digital economy, we can choose from a wide range of digital services that support us in the course of our daily lives. Apple’s well-known slogan “There’s an app for just about anything” perfectly illustrates this rich supply of digital services. Interestingly, in the market for digital services, we can observe that highly different companies compete with each other by offering quite similar services to potential users. Consider the example of digital payment services: in 2015, Ana Botín (executive chair of Santander) reflected on the increasing competition that traditional banks face nowadays given that technology companies have started to enter their market: “if you think about the big guys now, it is not the banks, it is these four large tech companies [Amazon, Apple, Facebook, and Google]” (ComputerWeekly 2015). Indeed, when considering digital payment services, we can choose from a variety of providers such as traditional banks but also technology companies such as Apple or Google (McKinsey 2014).

While digital payment services are just one example of highly different companies competing with each other when offering similar digital services, other markets and industries go through similar changes. To name just a few examples: television is no longer in the hands of incumbent media companies but is...
disrupted by companies such as Netflix or Amazon, supermarket chains increasingly face competition with companies like Amazon in providing food delivery services, and navigation systems are offered not only by companies with a longstanding history in this market but also by firms like Google or Apple.

But how do individuals arrive at an assessment which company’s service might be superior to that of a different provider? To once again consult the abovementioned example, digital payment services require profound technology expertise which seems to be the strong suit of inherently digital companies such as Apple or Google. And indeed, we can observe many people in our everyday lives using payment services provided by these companies (e.g., Apple Pay or Google Wallet). But on the other hand, these companies are new to the payments business where learning by doing does not seem to be an option. Accordingly, choosing these companies seems counterintuitive from the standpoint that traditional banks and payment providers have a strong history and rich experiences in this rather complex business.

In this research, we argue that an individuals’ evaluation of a given digital service depends on the company behind it. Although insights, how such evaluations can depend on a company’s characteristics, are abundant in technology adoption research (e.g., Gefen et al. 2003a; Gefen et al. 2003b; Pavlou 2003), this literature suggests that company’s characteristics affect users’ beliefs and behaviors independently of the service in question. In contrast, we advocate that users’ evaluations of digital services depend on an interaction between a company’s resources and a service’s requirements. We bring forward the idea that perceptions of how a company’s resources fit the service in question are relevant for users evaluating a potentially interesting service. We refer to this idea as enterprise-service-fit.

To the best of our knowledge, extant IS research has overlooked the possibility that a company’s characteristics interact with a particular service’s characteristics to influence a user’s evaluation of the service. Therefore, our study is exploratory in nature and aims at understanding what constitutes enterprise-service-fit in the context of digital services. We raise the following research question:

RQ: How can enterprise-service-fit be conceptualized in the context of digital services?

Faced with a lack of insights on the nature of enterprise-service-fit in the context of digital services, we performed a grounded theory study based on 37 interviews with potential users of these services. As a result, we define enterprise-service-fit as an individual’s perception of how well a service’s requirements are aligned with the resources available to the company providing the service. Thereby, we define a company’s resources as “assets and capabilities that are available and useful in detecting and responding to market opportunities or threats” (Wade and Hulland 2004, p. 109). Our results reveal five dimensions of enterprise-service-fit, which are concerned with 1) customer data, 2) non-customer data, 3) service functionalities, 4) domain-specific expertise, and 5) technological expertise. Besides, we provide preliminary evidence regarding possible consequences of enterprise-service-fit which helps to link the concept to existing theory. Finally, we offer an initial exploration of contextual factors that might influence how enterprise-service-fit operates.

Our research makes significant contributions to theory and practice. From a theoretical perspective, we offer a newly developed construct, namely enterprise-service-fit, that helps understanding how individuals evaluate digital services in the light of different providers. Along these lines, we identify five dimensions of enterprise-service-fit that account for the particular characteristics of digital services. Besides, we provide preliminary evidence of how enterprise-service-fit can be related to existing theory on users’ evaluations of digital services. From a practical perspective, our research supports companies in their assessments, which digital services might be more or less successful in a specific enterprise context.

The remainder of this paper is structured as follows: in section two, we present theoretical background on the concept of fit between organizations and its offerings as well as an overview of theory concerned with users’ evaluations of digital services. Next, we describe the methodology and the results of our grounded theory study. We conclude by integrating our results with existing theory and elaborating on the contributions and limitations of our research.

Theoretical Background

In this section, we introduce theoretical background on the concept of fit and provide a brief summary of research that has investigated users’ evaluations of digital services.
The Concept of Fit

The concept of fit has been examined in different streams of research, such as strategic management (e.g., Drazin and Van de Ven 1985; Venkatraman and Camillus 1984), marketing (e.g., Aaker and Keller 1990; Song et al. 2010; Völckner and Sattler 2006), or information systems research (e.g., Goodhue and Thompson 1995; Zigurs and Buckland 1998). In general, fit means that two or more variables match, are aligned, or congruent with each other (Venkatraman 1989). A state of fit can lead to improved outcomes. While the idea of fit between a company and its offerings has not been regarded in IS literature yet, recent research on strategic management emphasized the importance of a strategic fit (e.g., Porter 1996; Zajac et al. 2000), which means that a company’s resources should be aligned with its products or services (Andrews 1980). Complementing this organization-focused perspective, marketing research has analyzed fit between a company and its offerings using a more customer-centric lens in the area of brand extensions. As our study is concerned with the role of fit in individuals’ evaluations of digital services, we provide more details on the customer-centric perspective present in brand extension research below.

Brand extensions occur when products or services are added to a brand, which are targeted at markets not yet associated with the brand in question (Keller and Aaker 1992). Against this background, many studies have shown that new products and services are more successful if customers perceive a fit between these new offerings and the brand (e.g., Aaker and Keller 1990; Völckner and Sattler 2006; Völckner and Sattler 2007). Along these lines, different kinds of fit were found to influence the success of a brand extension. In particular, a product-category-fit refers to the perceived similarity between a new product’s category and the product categories the company is already active in (Czellar 2003). Besides, a brand-level-fit describes the extent to which a brand image is reflected in the extension category (Czellar 2003), which is also referred to as brand concept consistency (Park et al. 1991). By now, brand extension studies largely focused on non-digital products and services such as Heineken extending their brand from beer to also include wine (Aaker and Keller 1990). In contrast, digital services have not been investigated so far, except in one study by Song et al. (2010) who confirmed the importance of a fit between a company’s existing and new offerings in the context of a search engine’s brand extensions.

However, the lack of studies on brand extensions (and therefore on the role of fit between a company and its offerings) in the signifying context of digital services seems surprising, and we argue that research in this area is much needed. Likewise, Keller (2016, p. 11) reflects on the need for future brand research as follows: “Perhaps the most fundamental issue to consider is how the role of brands and branding has changed in today’s dynamic and fast-moving digital world” (emphasis added). He further argues: “With so many new and different consumer and firm capabilities, marketers need to rethink virtually all of their beliefs and practices [...]” In a similar vein, Völckner and Sattler (2007) underline that brand extension research is subject to considerable contextual influences. Therefore, we should not assume that existing brand extension research can satisfactorily explain individuals’ evaluations of digital services regarding a fit between a company and its offerings, which we refer to as enterprise-service-fit. Indeed, digital services might be a particularly interesting context to investigate enterprise-service-fit in, given that highly different companies, such as inherently non-digital companies (e.g., traditional banks) and digital companies (e.g., Google or Apple) increasingly compete with each other by offering similar services.

Research on Individuals’ Evaluations of Digital Services

We now provide a brief overview of literature concerned with individuals’ evaluations of digital services. Two streams of research are particularly relevant: technology adoption and information privacy research.

Research on IS adoption follows a long tradition and is concerned with the questions when, why, and how individuals decide to adopt and use a technology. Several theories have been developed, advanced, and applied over the last decades. Prominent examples are the Technology Acceptance Model (Davis 1989; Venkatesh and Bala 2008; Venkatesh and Davis 2000), the Unified Theory of Acceptance and Use of Technology (Venkatesh et al. 2003; Venkatesh et al. 2016), and the Innovation Diffusion Theory (Moore and Benbasat 1991; Rogers 2003). Many have built on these theories, for instance, by integrating the concept of user satisfaction into the Technology Acceptance Model (Wixom and Todd 2005). To date, research on IS adoption has extensively studied how users’ perceptions of technology characteristics or those of the company offering the technology affect users’ evaluations and adoptions of technology. For instance, studies have emphasized the importance of perceived usefulness and perceived...
ease of use as important determinants of users’ technology acceptance (e.g., Davis 1989; Davis et al. 1989; Venkatesh and Davis 2000). Others have studied how users’ perceptions of the company providing the technology influence individuals’ adoption decisions. In this regard, users’ perceptions of a company’s trustworthiness (e.g., Gefen et al. 2003b; Suh and Han 2003), reputation (e.g., Morgan-Thomas and Veloutsou 2013), or the risk to transact with the company (e.g., Pavlou 2003) were shown to affect adoption decisions significantly. Interestingly, none of these previous studies has considered the possibility that the characteristics of a particular service and the company behind it might interact to affect users’ beliefs and behaviors.

Research on information privacy has investigated the question how individuals’ privacy-related beliefs might affect their willingness to use services, which require personal information about them. Concepts such as individuals’ privacy concerns (e.g., Hong and Thong 2013; Malhotra et al. 2004; Smith et al. 1996) and the trade-off between benefits and risks when disclosing personal information (e.g., Dinev and Hart 2006) have been used to explain individuals’ information disclosure while using these services. Similar to IS adoption and use research, information privacy studies have examined the influence of both company and service characteristics on users’ privacy concerns and therefore on their willingness to use a service (Li 2011; Smith et al. 2011). However, a consideration of how a company’s and a service’s characteristics have to fit together and how this fit might influence users’ beliefs about a service, is missing from the information privacy literature as well.

In summary, both streams have so far neglected a potential interaction between a company’s resources and a service’s requirements for individuals’ evaluations of digital services. As a result, the nature and possible consequences of enterprise-service-fit in the context of digital services are unclear.

Methodology

To explore the idea of enterprise-service-fit, we decided to use a grounded theory approach (Glaser 1978; Glaser and Strauss 1967). This approach aims at systematically developing theory from data (Glaser and Strauss 1967), which we deemed appropriate, given the lack of research on the nature of enterprise-service-fit in the context of digital services. Grounded theory requires the researcher to stay open and “discover what is going on, rather than assuming what should go on” (Glaser 1978, p. 159). It thereby helped us to avoid force-fitting data into pre-existing categories as we explored the nature of enterprise-service-fit.

The idea of fit played the role of a seed concept in our study. Seed concepts are “hunches and sources of ideas that do not come from the data” (Urquhart 2013, p. 131). Seed concepts are accepted in Grounded Theory because they can “help a researcher to select an area of enquiry and define the topic” (Urquhart et al. 2010, p. 362). Other than that, we started our study with virtually no predetermined ideas to stay sensitive to what is happening in the data (Glaser 1978).

Data Collection and Theoretical Sampling

We collected data by conducting 37 semi-structured interviews with potential users of digital services. Interviews followed a coarse protocol as shown in the Appendix. Although presented in two separate subsections here, data collection and analysis were closely interlinked and proceeded in a highly iterative fashion, which is central to grounded theory studies (Glaser 1978; Glaser and Strauss 1967). We frequently met to discuss themes and ideas emerging from analyzing the latest interviews and to continuously refine the interview protocol to pursue interesting themes and to identify potential target participants that seemed most promising to interview next. This sampling strategy is referred to as theoretical sampling and presents a central element of developing grounded theory (Glaser and Strauss 1967). Specifically, we purposefully sampled our participants regarding their age, their gender, and their level of technology affinity to cover different perspectives towards digital services. Overall, our data was collected between June and November 2016.

Over the course of the last ten interviews, we recognized that no new codes emerged and that additional data revealed no new insights. This indicated that we had reached a point of theoretical saturation as we started seeing “similar instances over and over again” (Glaser and Strauss 1967, p. 61). Consequently, we ended our data collection after 37 interviews. The interviewees’ age ranged from 17 to 74 years resulting in
an average of 31.5 years. 15 of the participants were female, 22 were male. All participants were active smartphone users, which we deemed as relevant, given that many digital services are provided as mobile apps. Still, our participants differed with regard to how often they usually tried new apps which allowed us to incorporate both the perspectives of more and less experienced app users.

To explore the relevance of an enterprise-service-fit, we presented our interviewees the concept of a digital “smart travel assistant service,” which we explicitly describe at the end of this section. Participants should imagine this smartphone service being offered by two particular companies to create two different enterprise-service constellations and elicit participants’ thoughts and evaluations of these constellations. The companies were chosen in a way that should represent the common situation in which similar digital services are offered by a) an established non-digital company which tries to extend its offerings to digital areas and b) an established digital company trying to enter the traditional companies’ markets (as companies like Google, Apple, or Amazon often do).

Therefore, we chose a real and well-known transportation company “TransCom” (synonym) with a long history and experience in this business and a real digital company “TechCom” with a strong technological background and a wide portfolio of other digital services. This constellation is quite common in today’s market for digital services. For example, traditional banks are competing with companies like Apple or Google in offering digital payment services. Similarly, supermarket chains try to enter the digital market but face increasing competition from companies such as Amazon. Another example is presented by the hotel industry, in which established hotel chains face a strong competition with companies like Airbnb.

With regard to the “smart travel assistant service,” we explained our participants that the general idea of this service was to provide users with a) information and recommendations regarding places, cities, and countries the user might visit (e.g., sightseeing), b) travel planning (e.g., the quickest routes vs. the ones with more beautiful landscapes), and c) options for ticket purchases. To use this service, users were told that the service needed access to GPS data offered by their smartphones.

Coding and Data Analysis

In order to analyze our data, all interviews were recorded and transcribed immediately, which resulted in almost 300 pages of single-spaced text. Data analysis was supported by the software package MAXQDA 12. We applied an iterative coding approach, which consists of three coding techniques: we used open coding to generate an initial set of codes that described our interpretations of what was going on in the data (Glaser 1978). This included constant comparisons of each incident with existing categories and data (Glaser and Strauss 1967). As we analyzed more and more interviews, we recoded our data several times, merged and divided codes to represent the data in the best possible ways. Along these lines, we used extensive memo writing (over 200 memos) helping us to systematically collect and clarify ideas (Glaser 1978).

Next, we applied a selective coding approach that aimed at concentrating on common and conceptually interesting themes (Glaser 1978). In our case, this resulted in focusing on codes that were significantly related to our core theme of enterprise-service-fit. During this process, we discovered interactions between companies’ resources and service requirements, which we coded as fit dimensions. In the last step, we engaged in theoretical coding, which is concerned with the relationships between the most interesting codes under study (Glaser 1978). Accordingly, we looked for connections between the fit dimension codes and relevant codes regarding potential consequences of fit. To do so, we constantly compared the codes that originated from our data with constructs of established theories on individuals’ evaluations of digital services.

Throughout the whole process, we regularly discussed open questions which often led to new ideas and a deeper understanding of our data. Additionally, we collected early feedback from both potential customers of the travel assistant service and companies that were interested in understanding how digital services are evaluated by users. Specifically, we presented our preliminary results to our participants to check if they felt that our results represented their thinking appropriately. Likewise, we discussed our results in workshops with two companies, which were interested in how customers might evaluate digital services, to obtain their feedback and to better understand practical implications of our research.
Results

Conceptualization of Enterprise-Service-Fit

Five different dimensions of enterprise-service-fit emerged from our data. Most generally speaking, the extent of fit in each dimension depends on two factors: a) the resources a company has from the users’ perspective (i.e., company-related component) and b) what the service requires from the users’ perspective (i.e., service-related component). In a similar manner in which task-technology-fit means that a technology “has” what is “required” for a task (e.g., Goodhue and Thompson 1995), we define enterprise-service-fit in the context of digital services as an individual’s perception of how well a service’s requirements are aligned with the resources available to the company providing the service. In the following, we will provide more details on each of the five dimensions.

The first dimension we found represents a fit between available and required customer data. We define this fit dimension as the extent to which the personal user data required by the service is already available within the company. One interviewee stated that TechCom already accesses his GPS data through the operating system of his smartphone and additional location-based services. Therefore, he argued that the disclosure of GPS data in the introduced service did not represent an obstacle to use the service:

“Well, I use a smartphone from TechCom, so my current location is available for them anyway, since GPS is activated by default to use their maps service and similar stuff. Therefore, I would say that it doesn’t matter if TechCom uses my location for this travel assistant service as they already know where I am. So I don’t lose any more of my privacy.” (i34)

The following quote by a different participant describes a misfit in this dimension as the GPS data demanded by the service is not available to TechCom for this particular user. Given this misfit, the user would be required to disclose additional data, which negatively influenced his perception of the service:

“I would rather choose a service provided by the other companies to avoid that my whole data goes to TechCom. I mean, TechCom knows a lot about me already: they know a lot about my smartphone usage. So the GPS data [requested by the service] would come on top of that – as well as all of the data, which are then created regarding my travel activities.” (i32)

The second dimension that emerged from our data represents a fit between available and required non-customer data. We define this fit dimension as the extent to which non-customer data that is required to provide a service is already available within a company. By non-customer data, we refer to data that is not personal information of the customer who evaluates the service in question. Non-customer data is often collected by a company when offering other products and services. For instance, TransCom collects large amounts of data regarding the timing and schedules of their transportation services. Another example for non-customer data relevant in our context was map data owned by TechCom, which could show how different points of interest in a city are connected through bicycle routes. In the following quote, the interviewee explained that the map data available to TechCom could improve the travel assistant service:

“If I had to decide, I would choose to use the service provided by TechCom. [...] I think the reason is that TechCom is quite good at knowing what is where given their map services and everything. [...] I think they already possess a big amount of data.” (i36)

Another participant similarly highlighted that the availability of more service-relevant data could lead to advantages when providing this service. When asked about TechCom’s advantages when providing the travel assistant service compared to the other companies, the interviewee reported:

“Given that TechCom owns an enormous amount of data, they should be able to provide a better service I think, simply because of this abundance of data they have.” (i7)

Following our understanding of non-customer data, it also includes the data that has been generated by other individuals in the context of different services or products offered by a company. For instance, such data could occur in the form of individuals’ reviews about particular places of interest or profiles covering their behavior (e.g., which routes they frequently travel). Accordingly, the following participant

\[1\] We use the IDs (1 – 37) for our participants.
emphasized the value of integrating different pictures, reviews, and recommendations provided by individuals using the maps service of TechCom:

“Going back to the example of TechCom’s maps service, there are different tourist attractions and user photos, reviews, and further information related to them. Therefore, I believe that [the smart travel assistant service provided by TechCom that uses this information] would be rather up-to-date and better.” (i30)

Similarly, another interviewee highlighted the potential that could arise when a company can build on comprehensive insights regarding their users’ preferences obtained through analyzing the data that has been collected in existing services:

“As TransCom collects data of many passengers, they have a large aggregated data pool, which enables them to discover particular user preferences that can be used to provide better additional services. These services, in turn, are probably valuable for another large group of users.” (i19)

The third dimension of fit is related to existing service functionalities and the functional requirements of the new service. Existing service functionalities are features already implemented in other digital services of a company. We define this fit dimension as the extent to which the functionalities required in a new service already exist in other services of the company. Accordingly, participants assumed that it is beneficial for a company if it can reuse these existing functionalities. The following quote offers an example that a route planning functionality available to TechCom could be integrated into the travel assistant service:

“This can certainly be an advantage for TechCom, if their products are linked somehow. For instance, if I could use this traveling service to travel from A to B and then I could open the maps app, which has already downloaded an offline map of this city – different services could be integrated.” (i33)

The fourth dimension is concerned with available and required domain-specific expertise. We define this fit dimension as the extent to which the domain-specific expertise that is necessary to provide a service is already available to a company. In this respect, participants argued that they would rather use a service offered by a company if they perceived that the company would have the domain-specific expertise necessary to provide a high-quality service. For instance, one interviewee explained which domain-specific expertise he expected from both TechCom and TransCom and which service he would rather use as a result:

“I’d choose TransCom for anything related to traveling. […] For things related to searching such as looking for a restaurant, shopping, or products, I would certainly use a service provided by TechCom.” (i24)

Similarly, another participant highlighted the potential advantage that TransCom could have regarding all knowledge specific to traveling:

“Well, I guess that TransCom has a greater knowledge related to traveling. I think this is an advantage for them [when providing the introduced service].” (i15)

Finally, the fifth dimension is related to the fit between the available and required technological expertise. Accordingly, we define this fit as the extent to which the technological expertise that is necessary to provide a service is already available to a company. Similar to the previous fit dimension, individuals perceive it as an advantage if they think that a company already has the required technological expertise for providing a particular service. Therefore, this dimension, for instance, captures if a company can handle a service’s complexity regarding the collection, processing, analysis, and presentation of large amounts of data. Our results indicate that individuals consider if the technological expertise of a company is sufficient to provide a certain service. The following interviewee perceived a rather high complexity when talking about the travel assistant service. Accordingly, she reported that TechCom should be better in handling this complexity than TransCom:

“If the service is about filtering relevant things out of large amounts of data, I believe that TechCom would be more capable of doing so compared to TransCom, as they already deal with great amounts of data.” (i19)
Likewise, another interviewee explained that TransCom’s core business does not involve offering digital services. Therefore, he stated:

“I mean traveling is definitely TransCom’s business. But apps or data-related services – that’s the core business of TechCom and they are more experienced in this regard. They know how to effectively provide data [to users].” (i23)

Taken together, the analysis of our data revealed five dimensions of enterprise-service-fit that were relevant for participants’ perceptions of digital services. Table 1 (see the page after next) sums up the five dimensions of fit and offers additional quotes for each dimension.

Exploring Possible Consequences of Enterprise-Service-Fit

Going further, we provide preliminary results how enterprise-service-fit could relate to existing theories or concepts with regard to individuals’ evaluations of digital services. Note that our study is exploratory in nature – a theory-generating study – and that we, therefore, report on what emerged from the data. We do not seek to offer a complete and comprehensive framework of the consequences of enterprise-service-fit.

In case participants perceived an enterprise-service-fit with regard to the available and required customer data, two possible consequences were reported: first, participants told us that they were less concerned about their privacy, if the company offering the service already possessed the data requested by the service. For instance, one participant stated:

“[I wouldn’t have any concerns to provide my personal data in this service] as TransCom already has a lot of my data, including my bank account.” (i19)

Based on our data, it seemed that a high enterprise-service-fit regarding the available and required customer data reduces individuals’ specific privacy concerns, which represent “a person’s privacy concerns in a given [...] context, such as information requests by a particular website” (Li 2011, p. 466). In contrast, interviewees who perceived lower levels of fit in this dimension consistently reported higher specific privacy concerns. For instance, the following participant was worried about the increase in transparency when providing a company with additional data:

“TechCom gets more and more of my data. Over time, you become somewhat transparent for this company. When I would choose to rather share this part [traveling] of my life with TransCom, this transparency would be distributed a little more.” (i23)

Second, besides its effect on individuals’ privacy concerns, participants also mentioned that a high level of fit in this dimension would be beneficial for the service’s ease of use as they could save effort entering their personal data over and over again. Ease of use is defined as “the degree to which a person believes that using a particular system would be free of effort” (Davis 1989, p. 320) and represents a major factor in adoption research (e.g., Davis 1989; Davis et al. 1989; Venkatesh and Davis 2000). The following quote highlights the benefits of reusing a user account already existing at a company for a new service:

“I already have a user account at TransCom. It means that it’s easier to use the service [...]. So I would rather choose the service provided by TransCom. Using the service offered by TechCom would mean that I would have to enter my data once again.” (i29)

Regarding the second fit dimension (i.e., fit between available and required non-customer data), we observed that the availability of relevant non-customer data was perceived as helpful by the interviewees. It meant that the service could provide them with better travel-related information if this non-customer data could add value to the service. According to our results, a high fit in this dimension was positively associated with the perceived information quality of the service. Information quality has been defined in terms of the completeness, accuracy, format and currency of information and shown to affect individuals’ adoption decisions (Wixom and Todd 2005). For example, a participant emphasized how TechCom could leverage available map data to provide users with better information within the traveling assistant service:

“I just believe that TechCom has more data so they could provide a higher-quality service with more background information. [...] things about the landscape and other things, for instance.” (i22)
Likewise, another interviewee suggested that TransCom could offer a traveling assistant service with better information about traveling delays, having first-hand access to this information:

“TransCom could be faster than others, since I would get the information [using the service] immediately from the source as compared to a third-party company that probably gets their data from TransCom anyway.” (i28)

Remarkably, being able to provide a better information quality given the fit between available and required non-customer data is of particular importance, since a company’s non-customer data can include enormous amounts of data obtained from different sources (involving individuals’ use of existing products and services). Accordingly, when asked if the service provided by TechCom could be better due to the amount of data available, a participant emphasized that utilizing TechCom’s data would be beneficial as it has been generated by numerous individuals, which implies large improvements in the information quality:

“Yes, definitely [the service provided by TechCom could be better due to their enormous amounts of data]. As TechCom uses their [virtual personal assistant] and other services to track [their users’] locations and transfers this information to their servers, they permanently know where people are. This is fully enabled by the smartphones based on [TechCom’s operating system] and the people using TechCom’s maps service.” (i31)

As described, the third dimension accounts for a fit between existing functionalities already implemented in other services and the functional requirements of the new service. We found that participants expected a higher usefulness of a service if a company was able to reuse existing functionalities in the particular service. Thereby, existing functionalities must be relevant for the digital service in question. In the context of consumer services, perceived usefulness has been defined as “the extent to which an individual perceives a [service] to be useful in performing [...] tasks” (Kumar and Benbasat 2006, p. 428). A higher usefulness may be a result of both the availability of more functions (as additional functions could be integrated with little effort) and the quality of these functions (as reuse could lead to a higher maturity). The following quote provides an example of this relationship:

“Intuitively, I would expect that TechCom’s service would be richer and better integrated with their existing services such as their maps service. [...] I think that their service would [...] offer more functionality.” (i30)

As shown before, the fourth dimension illustrates the need for a fit between the available and required domain-specific expertise. Our data showed that interviewees associated a high domain-specific expertise with regard to the domain of the particular service (e.g., traveling) with the ability to build a better service in terms of a higher usefulness. Accordingly, this indicates that perceptions of fit with respect to the domain-specific expertise resulted in a higher perceived usefulness of a service in this domain.

The following quote illustrates that the interviewee perceived TransCom to be more capable than other companies when it comes to building a traveling-related service, given the company’s domain-specific expertise:

“I think that TransCom could build a better service when talking about traveling, because of their expertise in the local market compared to TechCom.” (i7)

As mentioned, the fifth dimension of enterprise-service-fit refers to a fit between available and required technological expertise. We observed two consequences of this fit dimension: information quality and system quality. Going further, we provide examples and brief explanations for each consequence. First, if participants felt that a company had a strong technological expertise, which is relevant for the specific digital service, they assumed that the company’s skills regarding the processing and analysis of data could lead to a higher information quality of the service:

“From a technological perspective, I think TechCom is more capable [to provide the introduced service ...]. I believe they could offer it with more features, more possibilities for people who are really interested in these topics [...] to inform themselves.” (i29)
Table 1. Summary of the Dimensions of Enterprise-Service-Fit and Its Possible Consequences

<table>
<thead>
<tr>
<th>Fit No. and Definition</th>
<th>Example Quotes</th>
<th>Example Quotes for Possible Fit Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit 1: extent to which the personal user data required by the service is already available within the company.</td>
<td>“This company already has a lot of my personal data, for instance from their search engine or other services. So, it’s not an additional company that [...] I provide my data with [when I use the service]. Instead, this company already has my data and now just uses it in a different way.” (i11)</td>
<td>a) Fit is associated with less specific privacy concerns.
“Consider that TransCom already knows where you’re going. In fact, if I’ve bought a ticket using their service, then they know I’m on my way. [...] Thus, I wouldn’t be too concerned that they know a lot more about me in addition to what they already know if I’d use the new service.” (i13)</td>
</tr>
<tr>
<td>Fit 2: extent to which non-customer data that is required to provide a service is already available within a company.</td>
<td>“I believe that TechCom would have an advantage [when providing this service]. They’ve already collected a lot data about the world for their maps service. TransCom would have to start afresh since they haven’t done anything like that before.” (i12)</td>
<td>a) Fit is associated with a higher information quality.
“I think that they could likely provide me with a lot more and more accurate information [within the travel assistant service] than the TransCom, given the amount of data TechCom has.” (i13)</td>
</tr>
<tr>
<td>Fit 3: extent to which the functionalities required in a new service already exist in other services of the company.</td>
<td>“I think that TechCom has a great advantage [offering the travel assistant service] due to their maps service. They could say: ‘You’re here’ and then the maps service can help you navigating.” (i27)</td>
<td>a) Fit is associated with a higher perceived usefulness.
“With regard to traveling, I can’t think of anything particular, where TechCom would have an advantage over TransCom. But maybe for navigation, because their maps service already has some functionalities in this regard.” (i15)</td>
</tr>
<tr>
<td>Fit 4: extent to which the domain-specific expertise that is necessary to provide a service is already available to a company.</td>
<td>“If the service is not about knowledge related to traveling, I wouldn’t choose TransCom, because I would think that they lack that knowledge.” (i15)</td>
<td>a) Fit is associated with a higher perceived usefulness.
“I think that TransCom could provide a better service. [...] They are closer to the customers, they know this area better. [...] They are just closer to the problems of the customers. [They know about] why people are traveling. What are their complaints? What are they missing during their travels? I think they are closer.” (i35)</td>
</tr>
<tr>
<td>Fit 5: extent to which the technological expertise that is necessary to provide a service is already available to a company.</td>
<td>“When it comes to artificial intelligence, things like recommendations based on my data [...] I believe that TechCom clearly has a greater expertise in this area. [...] I could definitely imagine that [the presented service would be better when provided by TechCom].” (i33)</td>
<td>a) Fit is associated with a higher information quality.
“I don’t think they [TransCom] could provide the data in a current and timely fashion. [...] I don’t think that they could provide real-time information at the right time and at the right place. I don’t think that they are able to do this from a technological standpoint.” (i8)</td>
</tr>
<tr>
<td></td>
<td>“In terms of such a service, it’s crucial for me to quickly and clearly [...] access the data. [...] If you are unexperienced, then you are not going to do this as well as others who already have this experience due to the fact that they have already tried these things.” (i34)</td>
<td>b) Fit is associated with a higher system quality.
“They have a strong [technological] expertise in different areas and TransCom does not. [...] Thus, I believe [...] that the service is possibly more stable and reliable.” (i30)</td>
</tr>
</tbody>
</table>
Second, a perceived fit in this dimension was also associated with a higher *system quality*, which has been linked to individuals’ adoption decisions in prior research (Wixom and Todd 2005). Thereby, system quality has been conceptualized as a service’s reliability, flexibility, integration, accessibility, and timeliness (Wixom and Todd 2005). Along these lines, a participant emphasized that he would rather choose the service of TechCom if the service required a high availability:

“For me, TechCom represents availability [of their services]. Thus, I would rather use a service from TechCom, if I’d need to frequently access it […]. In contrast, I don’t see that as an area of expertise of TransCom.” (i13)

Overall, our data showed several salient relationships of enterprise-service-fit with constructs of existing adoption, use, and privacy theories. Table 1 provides an overview of all fit dimensions and their possible consequences.

Exploring Enterprise-Service-Fit and the Role of Context

During the identification of the fit dimensions and their possible consequences, we constantly compared our observations with the existing categories and data. Exploring our data this way made us aware that whether individuals incorporated a fit dimension in their evaluations of the service should depend on different contextual factors (i.e., different service and/or company-related characteristics). In other words: considering different enterprise-service-constellations could result in the fact that the fit dimensions become more or less important for individuals’ evaluations of the particular service in this context. Both IS research (Davison and Martinsons 2016) as well as literature on brand extensions (Völckner and Sattler 2007) emphasizes that elaborating on context is of significant importance. Therefore, we offer initial evidence on how the enterprise-service-fit dimensions’ effects on users’ evaluations of services might depend on context. This way, we provide future research with initial ideas how context might be relevant. Specifically, we point to potential moderators of the relationships between enterprise-service-fit and its consequences.

Table 2 offers an overview of the total number of participants who incorporated each fit dimension in their evaluations of the service in question. Note that this count only represents our particular enterprise-service constellation and the relative importance of each dimension is not generalizable across contexts. In fact, we argue below that these numbers are conditional on the specific context under investigation.

<table>
<thead>
<tr>
<th>Table 2. Importance of the Fit Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit Dimension</td>
</tr>
<tr>
<td>Fit 1 (personal user data fit)</td>
</tr>
<tr>
<td>Fit 2 (non-customer data fit)</td>
</tr>
<tr>
<td>Fit 3 (service functionalities fit)</td>
</tr>
<tr>
<td>Fit 4 (domain-specific expertise fit)</td>
</tr>
<tr>
<td>Fit 5 (technological expertise fit)</td>
</tr>
</tbody>
</table>

Table 2 shows that the importance of the fit dimensions substantially differs. Participants incorporate fit dimension 2 (i.e., non-customer data fit, in 22 cases) and 3 (i.e., service functionalities fit, in 18 cases) most often in their evaluations. Next, dimension 1 (i.e., personal user data fit) was referred to in 15 cases, whereas fit dimension 5 (i.e., technological expertise fit) was incorporated in 14 cases. Finally, fit dimension 4 (i.e., domain-specific expertise fit) was mentioned in 9 cases.

We believe that other services than our exemplary travel assistant service could substantially alter the importance of each fit dimension. In the case of our smart travel assistant service, we asked participants to disclose only little data (i.e., GPS data). Consequently, if we consider a service that requires more and also more critical user data (e.g., financial or health data), the importance of dimension 1 (i.e., personal user data fit) should increase. Similarly, our smart travel assistant service included a rather broad set of features (i.e., providing information and recommendations regarding different places, cities, and
countries, travel planning functionalities, and options for ticket purchasing). As a result, the importance of dimensions 2 (i.e., non-customer data fit) and 3 (i.e., service functionalities fit) might be rather high as a large feature set usually requires to integrate much data and functionalities. If we look at a digital service with a narrow feature set instead, the importance of these dimensions might decrease. Finally, the smart travel assistant service is not characterized by a high technological complexity. Therefore, the relevance of dimension 5 (i.e., technological expertise) shows a rather immediate level in our context. In contrast, if we regard a service that incorporates high technological complexity (e.g., predictions with advanced machine learning techniques), the relevance of dimension 5 (i.e., technological expertise) might increase.

In sum, these preliminary results can provide future research with ideas how contextual factors might influence the ways in which individuals’ enterprise-service-fit perceptions affect different outcomes.

Discussion and Theoretical Integration

The objective of this study was to explore the nature of enterprise-service-fit in the context of digital services. In this section, we integrate the results of our grounded theory study with prior literature and highlight our contributions. We begin by discussing our findings in the light of existing research on individuals’ evaluations of digital services and continue by relating them to the brand extension literature. Subsequently, we discuss practical implications of our study and complete this section by describing our limitations and avenues for future research.

Integration with Research on Individuals’ Evaluations of Digital Services

Given prior literature on individuals’ evaluations of digital services, we contribute by (1) conceptualizing a new construct (i.e., enterprise-service-fit) including the identification of its dimensions, and by (2) presenting an initial exploration of its possible consequences. Below, we describe these contributions in more detail. We start by discussing enterprise-service-fit on the construct level, before elaborating on its dimensions and their consequences.

Within the conceptualization of the enterprise-service-fit construct, we introduced the idea that individuals’ evaluations of a digital service depend on the company behind it. Using a qualitative study, we investigated this notion and provided evidence that individuals indeed incorporate their perception of how well a company fits the service it offers when evaluating a service. As our study’s participants considered the concept of fit in the form of an alignment between a service’s requirements and a company’s resources, we defined enterprise-service-fit referring to this interplay. Given the frequent occurrence of individuals’ enterprise-service-fit reflections in our data, our findings highlight the importance of a joint consideration of a company’s resources and a service’s requirements when accounting for individuals’ evaluations of digital services. This perspective appears to be promising since existing IS adoption and use literature has neglected to consider the interplay between organizational and service characteristics to date. Accordingly, prior research has analyzed the influence of these characteristics merely separately so far (e.g., Gefen et al. 2003a; Gefen et al. 2003b; Pavlou 2003).

Referring to the five dimensions of enterprise-service-fit identified in this study, we describe below how they relate to existing constructs present in IS research. Besides, we also account for the dimensions’ consequences and discuss how considering them in individuals’ evaluations of digital services contributes to prior research concerned with this topic.

Fit dimension 1 (i.e., personal user data fit) relates to the amount of information that individuals need to provide to use a service. By emphasizing that a company’s reuse of available customer data can change how many information individuals need to disclose, fit dimension 1 improves our understanding of how individuals’ privacy concerns and their perceptions of the service’s ease of use form. Specifically, prior research stated that individuals’ privacy concerns depend on the amount of information they are requested to disclose (e.g., Malhotra et al. 2004; Smith et al. 1996; Stewart and Segars 2002). However, existing studies considered this amount of information solely based on the information required by the regarded service. Fit dimension 1 of our study refines this perspective by highlighting that we can better understand individuals’ privacy concerns, if we additionally incorporate the information that already has been disclosed to a company, beyond the particular service. Indeed, already disclosed information should
not further concern individuals when they have to provide them again. Besides, our findings show that individuals expect a service to be easier to use if they do not have to provide their already disclosed data again due to the company’s reuse of it. Given this result, fit dimension 1 emphasizes the relevance of incorporating the benefits of reusing existing data, which come along with a fit between the service’s requirements and the company’s resources, when accounting for individuals’ perceptions of a service’s ease of use. This way, fit dimension 1 complements prior research that mainly focused on considering individuals’ perceptions of a service’s ease of use regarding its functionalities (e.g., Davis 1989; Davis et al. 1989; Venkatesh and Davis 2000).

Fit dimension 2 (i.e., non-customer data fit) refers to the benefits that can arise when companies are able to combine data across different products and services. By carving out that individuals consider these benefits when evaluating a digital service, fit dimension 2 offers a new perspective on why individuals might expect a service to provide high-quality information. Precisely, existing literature on big data and data analytics underlined the potential companies could tap in when linking large amounts of data to create improved products and services (e.g., Davenport 2006; Davenport et al. 2012). So far, previous studies discussing this thought solely covered the organizational perspective, neglecting a user-centric lens. Accordingly, research on individuals’ adoption and use of digital services did not incorporate this idea. Extending prior research, fit dimension 2 of our study provides new insights into individuals’ service evaluations by stressing that individuals consider a company’s potential of utilizing its existing data in a new service when assessing the service’s information quality. This way, we complement the organization-centric perspective present in the big data and data analytics literature (e.g., Davenport 2006; Davenport et al. 2012).

Fit dimension 3 (i.e., service functionalities fit) relates to the benefits that can occur when companies are able to reuse existing service functionalities. By stressing that individuals incorporate these benefits in their evaluations of digital services, fit dimension 3 provides a new perspective on why individuals might expect a service to be more useful. Specifically, existing studies on software and code reuse proposed that companies can develop digital services more efficiently by building on the functionalities already implemented in existing services (e.g., Frakes and Kang 2005; Sojer and Henkel 2010). By utilizing such a strategy, it should be possible to develop a better service in less time. However, while this idea has frequently been considered using an organization-centric perspective, individuals’ perceptions of reusing service functionalities have not been regarded yet. Rather, existing adoption and use literature solely focused on considering the functionalities of the service in question, without respecting a company’s existing functionalities. Extending prior research in this area, fit dimension 3 of our study reflects a new angle accounting for individuals’ service evaluations by emphasizing that they take a company’s potential of reusing functionalities into consideration when estimating a service’s usefulness.

Fit dimension 4 (i.e., domain-specific expertise fit) and fit dimension 5 (i.e., technological expertise fit) refer to individuals’ perceptions of a company’s ability to provide the service in question. By highlighting that individuals incorporate the interplay between a company’s expertise and a service’s requirements when evaluating a service, fit dimensions 4 and 5 refine our understanding of how they estimate its usefulness, information quality, and system quality. Precisely, prior IS adoption and use research frequently studied the concept of trust (e.g., Casey and Wilson-Evered 2012; Gefen et al. 2003a; Gefen et al. 2003b), suggesting that individuals’ perceptions of a service provider’s ability influence their trust in the provider. Following Mayer et al. (1995, p. 717), ability refers to the “group of skills, competencies, and characteristics that enable a party to have influence within some specific domain.” In fact, our fit dimensions 4 and 5 well cover this definition. Still, they also extend our understanding of how individuals’ perceptions of a company’s ability influence their service evaluations. On the one hand, they suggest that individuals consider a company’s ability in the context of a particular service and not just on a general level, which underlines the benefits of a fit between a company and a service. On the other hand, fit dimensions 4 and 5 detail what kinds of expertise individuals deem to be essential to provide digital services (i.e., domain-specific and technological expertise). By providing this differentiation, we also disentangle the consequences of the dimensions: Our results indicate that a domain-specific expertise fit directly influences a service’s usefulness, while a technological expertise fit affects a service’s information and system quality that, in turn, impact its usefulness (Wixom and Todd 2005). Consequently, a technological expertise fit asserts an indirect effect on a service’s usefulness. Therefore, our findings refine prior research that usually focused on the relationship between trust (including the ability dimension) and a service’s usefulness without considering its information and system quality (e.g., Gefen et al. 2003b).
Integration with Brand Extension Research

In this section, we relate our findings to literature on brand extensions. This way, we show that our results are well aligned with existing theory underpinning the validity of our emerged enterprise-service-fit concept. Further, we discuss how our findings extend prior brand extension research.

Studies on brand extensions frequently showed that individuals evaluate a new product or service based on their perception of fit between the offering and the brand providing it (e.g., Aaker and Keller 1990; Völckner and Sattler 2006; Völckner and Sattler 2007). In fact, fit has been regarded in different forms, such as a product-category-fit and a brand-level-fit (Czellar 2003). Remarkably, the results of our study thoroughly reflect the ideas expressed in these forms of fit, which we discuss with more details below:

The notion of a product-category-fit suggests that it is beneficial for a company if the category of existing offerings resembles a new product’s or service’s category. Developing a new service in a familiar service category usually enables companies to reuse some of its resources. In the context of digital services, the possibilities to reuse resources in particular refer to given data, functionalities, and expertise. As our enterprise-service-fit accounts for utilizing existing resources in the form of data (i.e., customer and non-customer data fit), functionalities (i.e., service functionalities fit) and expertise (i.e., domain-specific and technological expertise fit), it well reflects the ideas included in a product-category-fit.

Besides, a brand-level-fit implies that a new product or service is more successful if its category represents a brand’s image (Czellar 2003). While the scope of this perspective varies depending on what is regarded as a brand’s image, our fit concept still covers different brand-level-fit constellations. For instance, some of our participants perceived TechCom to be a “data-driven company.” Therefore, offering a new data-driven service should fit its brand image well. Being a data-driven organization usually implies that the company already possesses large amounts of data, implemented functionalities to use them, and has the corresponding technological expertise at its disposal. Against this background, our fit concept well reflects the ideas included in this particular brand-level-fit as harnessing existing data (i.e., customer and non-customer data fit), functionalities (i.e., service functionalities fit), and technological expertise (i.e., technological expertise fit) is of concern to our fit dimensions. Beyond this example, other brand-level-fit constellations can be similarly represented by our fit concept, for instance, if we regard brands that are perceived to be specialists in a particular domain (which relates to our domain-specific expertise fit).

Finally, we also contribute back to brand extension theory by offering new insights on the concept of fit in the signifying and so far barely studied context of digital services, which increasingly gains importance in marketing research (Keller 2016). In particular, we reveal which fit dimensions are relevant in this context. Compared to non-digital brand extensions, the possibilities to reuse existing data and already implemented functionalities directly refer to the peculiarities of digital services. Against this background, our findings can inform future research by pointing to service characteristics promising to study prospectively. Besides, the enterprise-service constellation considered in our study (i.e., an inherently non-digital company competes with a digital company) can help to improve our understanding of how companies, which substantially differ from each other regarding their digital experience, are perceived by potential customers.

Implications for Practice

From a practical perspective, our results support companies in better understanding how users assess digital services. More precisely, we provide managers with guidance regarding which fit dimensions are important from the users’ perspective. Further, our findings might also help companies to understand possible consequences of (mis-)fit. In the following, we discuss implications for the development of new and the communication around existing services.

When companies have to decide which digital services they should develop in the future, our study emphasizes that they need to consider their own strengths and weaknesses with regard to the services in question (as well as those of their competitors). Against this background, the dimensions of enterprise-service-fit can help to identify these strengths and weaknesses. For instance, traditional automotive companies currently evaluate the potential of digital services based on the data produced by drivers every day. A service which builds on these data should leverage the fact that this resource is unavailable to purely digital companies. Accordingly, digital companies cannot achieve a personal user data fit in this
regard. Similarly, our findings can support traditional banks in developing new digital payment services that have to compete with the solutions provided by companies like Apple or Google.

Our results can also support companies in improving users’ fit perceptions of already existing services. Companies could try to influence users’ perceptions of enterprise-service-fit using appropriate communication and marketing measures. For instance, a transportation company such as TransCom could try to improve individuals’ perceptions of its technological expertise. In this regard, marketing efforts should be targeted at positioning the company as a competitor in the digital age. As our data showed, many participants did not associate this company with expertise in the area of digital services. The company could benefit from showcasing innovative examples of their capabilities regarding data analytics and digital services to its customers.

Limitations and Future Research

Our results should be viewed in the light of their limitations, which also point to possibilities for future research. First, our sample consisted of relatively young (mean age was 31.5 years) and rather educated smartphone users, which represent an important target group of digital services. Although our findings are well aligned with existing brand extension literature concerned with the idea of fit between a company and its offerings, it is possible that other populations could differ regarding their enterprise-service-fit perceptions. So far, we accounted for possible differences by purposefully looking for variations in our participants’ fit perceptions depending on their age, but could not detect any substantial deviations. However, future studies drawing on different samples could further validate and refine our results.

Second, future theory testing research could account more thoroughly for the consequences of our fit dimensions. While we provided preliminary insights on which constructs from prior adoption and use theory could be affected by our fit dimensions, we were not able to quantify the sizes of these effects yet. Accordingly, little is known about the dimensions’ relative importance so far. Therefore, a quantitative study with appropriate measurements for enterprise-service-fit could greatly complement our findings by revealing the effect sizes and relative importance of the dimensions’ consequences identified in this study.

Third, while we started to explore the role of context for individuals’ fit perceptions, a good deal of work is necessary to examine which contextual factors (such as a service’s data requirements, its feature set or technological complexity) indeed exert a significant influence. Consequently, future research could improve our understanding of the enterprise-service-fit construct by considering additional enterprise-service constellations reflecting different contextual factors. For instance, constellations interesting to examine can be found in the financial services industry that increasingly faces competition from digital companies or in the automotive industry which competes with companies like Google or Uber.

Appendix: Interview Protocol

1. Please provide us with some personal information (age, gender, and education).
2. Do you possess a smartphone? If yes, how often do you regularly use it? How often do you try new services?
3. How well do you know the following companies (i.e., TransCom, TechCom)? What comes to your mind when thinking about these companies?
4. [Introduction of the exemplary service concept]
5. Could you imagine using such a service? What are the reasons? Which functionalities do you particularly like about the service?
6. Do you have any concerns regarding the data, which needs to be disclosed when using the service? Why?
7. Which role does the particular organization offering this service play for making your assessment?
8. [Introduction of the possibility to choose between different providers for the described service]
9. Which advantages and disadvantages do you associate with having the different organizations as the provider of this service?
10. Which company would you prefer to provide you with the mentioned service? For which reasons?
11. How would this service need to be different to make you choose it from a different company than the one you just picked?
References

